
GPIB-488
GPIB-488 Programming Reference Manual

Programming Reference Manual

May 2009
371930E-01

© 1996–2009 by Quality Instrumentation Solutions, Inc. and its licensors. All rights reserved.

Conventions

The following conventions are used in this manual:

[] Square brackets indicate the key to be pressed.

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

When symbol is marked on a product, it denotes a warning advising you to
take precautions to avoid electrical shock.

When symbol is marked on a product, it denotes a component that may be
hot. Touching this component may result in bodily injury.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

GPIB terms used within this manual are:

GPIB General Purpose Interface Bus

System controller The system controller has the unique ability to retrieve active control of the
bus or to enable devices to be remotely programmed. It takes control of the
bus by issuing an IFC (Interface Clear) message for at least 200 µsec. It also
can put devices into the remote state by asserting the REN (Remote Enable)
line.

There is always one system controller in a GPIB system. The system
controller is designated at system initialization either through the use of
hardware switches or by some type of configuration software, and is not
changed. The system controller can be the same controller as the one which
is the current active controller or an entirely different one. Note that if a
controller is both a system controller and the active controller and it passes
control to another controller, the system controller capability is not passed
along with it.

Active controller The active controller is the controller which has the ability to mediate all
communications which occur over the bus. In other words, the active
controller designates (addresses) which device is to talk and which devices
are to listen. The active controller is also capable of relinquishing its
position as active controller and designating another controller to become
the active controller.

Device A device is any IEEE-488 instrument which is not a system controller or
active controller. It can be idle or act as a talker and/or listener when
addressed or unaddressed by the active controller.

Listener A listener is any device which is able to receive data when properly
addressed. There can be up to 14 active listeners on the bus concurrently.
Some devices can also be a talker or controller; however, only one of these
functions can be performed at a time.

Talker A talker is a device which can transmit data over the bus when properly
addressed. Only one device can transmit at a time. Some devices can also
be a listener or controller; however, only one of these functions can be
performed at a time.

GPIB-488 v Programming Reference Manual

Contents

Chapter 1
GPIB Software Overview

Supported Languages...1-1
GPIB Library Utility Programs..1-2

Support for VISA Calls ...1-2
GPIB-32.DLL Function Support ...1-2
GPIB488.DLL Function Support ..1-2
Unsupported API ...1-3
Asynchronous API...1-3
GPIB32 API and GPIB488 API Differences...1-3
Migrating from the GPIB32 API to the GPIB488 API1-3

Chapter 2
Programming with the GPIB Library

General Concepts ...2-1
Device vs. Board I/O ...2-2
Device I/O ...2-2
Board l/O ...2-3
Device Handles..2-3
Global Variables..2-3

ibsta/Ibsta()—The Status Word ..2-4
iberr/Iberr()—The Error Variable ...2-4
ibcnt and ibcntl/Ibcnt()—Count Variables..2-4

Thread Variables ...2-4

Chapter 3
GPIB 488.1 Library Reference

IBASK ...3-3
IBCAC ...3-6
IBCLR..3-7
IBCMD ..3-8
IBCMDA ...3-10
IBCONFIG...3-12
IBDEV ...3-16
IBDMA ..3-18
IBEOS..3-20
IBEOT..3-22
IBFIND ..3-24

Contents

Programming Reference Manual vi GPIB-488

IBGTS.. 3-25
IBIST ... 3-27
IBLINES.. 3-28
IBLN.. 3-30
IBLOC ... 3-31
IBONL... 3-32
IBPAD ... 3-33
IBPCT.. 3-34
IBPPC.. 3-35
IBRD.. 3-37
IBRDA... 3-39
IBRDF ... 3-40
IBRPP.. 3-42
IBRSC.. 3-44
IBRSP.. 3-45
IBRSV ... 3-46
IBSAD ... 3-47
IBSIC... 3-48
IBSRE.. 3-49
IBSTOP ... 3-50
IBTMO .. 3-51
IBTRG ... 3-53
IBWAIT... 3-54
IBWRT .. 3-56
IBWRTA ... 3-58
IBWRTF.. 3-59

Chapter 4
GPIB 488.2 Library Reference

AllSpoll.. 4-2
DevClear.. 4-3
DevClearList.. 4-4
EnableLocal ... 4-5
EnableRemote.. 4-6
FindLstn... 4-7
FindRQS.. 4-9
PassControl.. 4-10
PPoll .. 4-11
PPollConfig ... 4-12
PPollUnconfig ... 4-13
RcvRespMsg.. 4-14
ReadStatusByte.. 4-15
Receive .. 4-16

Contents

GPIB-488 vii Programming Reference Manual

ReceiveSetup ...4-17
ResetSys...4-18
Send ...4-19
SendCmds ..4-20
SendDataBytes...4-21
SendIFC ...4-22
SendList ...4-23
SendLLO..4-25
SendSetup ..4-26
SetRWLS ...4-27
TestSRQ...4-28
TestSys...4-29
Trigger ...4-30
TriggerList ...4-31
WaitSRQ..4-32

Appendix A
Multiline Interface Messages

Appendix B
IBSTA

Appendix C
IBERR

Index

GPIB-488 1-1 Programming Reference Manual

1
GPIB Software Overview

The GPIB software includes the 488.1 library, the 488.2 library, and a set
of utility programs. The 488.1 library consists of all of the functions and
subroutines that begin with the letters “ib”. The 488.1 library routines refer
to devices on the GPIB bus by their device names and handles rather than
by their GPIB addresses.

The 488.2 library consists of all the routines that do not begin with the
letters “ib”. The 488.2 library routines refer to devices on the GPIB bus by
their GPIB addresses rather than by their names or handles.

Supported Languages
The GPIB library provides identical routines for each supported language.
Languages supported by the GPIB library at the time this manual was
published are listed below.

Table 1-1. Programming Languages

Programming Languages

Delphi

C

C#

Visual Basic

Visual Basic .NET

Chapter 1 GPIB Software Overview

Programming Reference Manual 1-2 GPIB-488

GPIB Library Utility Programs
The following utility programs are installed with the GPIB library
software.

Support for VISA Calls
VISA (Virtual Instrument Software Architecture) drivers are command
drivers that convert company and program-independent VISA calls into
company-dependent calls.

GPIB-32.DLL Function Support
Each library function defined by GPIB 488.1 and GPIB 488.2 has a
corresponding entry point in gpib-32.dll. gpib-32.dll is available for
32-bit applications only. For all future applications, gpib488.dll is the
recommended method. A C application needing 64-bit support must
migrate to using gpib488.dll.

In a C application, to use gpib-32.dll, include gpib.h in your source
files and link your program with the gpib-32.obj object file. All
examples are available from the Start menu.

GPIB488.DLL Function Support
Each library function defined by GPIB 488.1 and GPIB 488.2 has a
corresponding entry point or equivalent function in gpib488.dll.
gpib488.dll is available for both 32-bit and 64-bit applications.
gpib488.dll is the recommended method for programming GPIB.

In a C application, to use gpib488.dll, include gpib488.h in your
source files and link your program with the gpib488.obj object file. For
64-bit applications, use gpib488.obj under the win64 directory. All
examples are available from the Start menu.

Utility program Description

GPIBDIAGNOSTIC.EXE Software and hardware test program

CBIC32.EXE Interactive control program

GPIBCONF.EXE Configuration utility program

Chapter 1 GPIB Software Overview

GPIB-488 1-3 Programming Reference Manual

Unsupported API
The GPIB library does not support iblck or ibnotify. Applications that
utilize these functions will not run properly.

Asynchronous API

Asynchronous I/O is not explicitly supported and is treated as synchronous.
This affects ibcmda, ibrda, and ibwrta.

GPIB32 API and GPIB488 API Differences
The following list outlines the changes from the gpib32.dll to the
gpib488.dll interface.

• Use of wchar_t instead of unsigned short for wide character functions
(ibfindW(), ibrdfW(), and ibwrtfW()).

• Use of const for buffers where applicable (ibcmd(), ibwrt(), etc.).

• Use of size_t types for buffer sizes (ibcmd(), ibrd(), etc.).

• All status variables are now of type unsigned long.

• Removal of ThreadIbcntl(). This is now a macro that calls
ThreadIbcnt().

• Addition of new global status variable functions: Ibsta(), Iberr(),
Ibcnt().

• All long-term deprecated functions are completely removed.

• Functions with ibconfig() equivalent functionality have been
replaced with a macro that calls ibconfig(). These functions are
ibpad(), ibsad(), ibtmo(), ibeot(), ibrsc(), ibsre(),
ibeos(), ibdma(), ibist(), and ibrsv().

• Addition of the IbaEOS option for ibask() and IbcEOS option for
ibconfig().

Migrating from the GPIB32 API to the GPIB488 API
To migrate from gpib-32.dll to gpib488.dll, include gpib488.h
instead of gpib.h and link with gpib488.obj instead of gpib-32.obj.
Some signed/unsigned compiler warnings may occur due to the type
change for the status variables, but these are easily correctable.

GPIB-488 2-1 Programming Reference Manual

2
Programming with the GPIB
Library

The routines are divided into two distinct libraries. All routines which begin
with “ib” are part of the “488.1” or “Original GPIB library.” All other
routines are part of the “488.2 library.” You only need to use one or the
other library. Each library provides a different method of performing the
same tasks. The choice of which library to use is a matter of personal
preference. If you use the original GPIB library, you can perform either
Board Level or Device Level operations.

Original 488.1 library—The 488.1 library (also referred to as the original
library), consists of all of the functions and subroutines that begin with the
letters “ib”. This library uses a concept of device names and handles rather
than GPIB addresses when referring to GPIB devices. There are two
advantages to this approach:

• The GPIB addresses of each device are not stored in the program, so
the same program can run on different buses where the addresses of
each device are different.

• The program can refer to each device with an intelligible name rather
than a number (the GPIB address).

488.2 library—This library consists of all the routines that do not begin
with the letters “ib”. These routines refer to all devices on the bus by their
GPIB addresses rather than by names. The Device I/O section does not
apply to the 488.2 library.

The GPIB library includes different routines that allow you to control the
operations of the GPIB bus in a very specific manner. You may find the
number of routines included in the GPIB library intimidating, however, in
most applications you need to use only a small subset of these routines.

General Concepts
This section explains the difference between routines which use Device I/O
and those which use Board I/O, the use of device handles, and the global
variables used by the library routines.

Chapter 2 Programming with the GPIB Library

Programming Reference Manual 2-2 GPIB-488

Device vs. Board I/O
The most typical GPIB operations are sending commands to a device
attached to the bus and reading back responses. To do this, program the
GPIB board to execute these steps:

1. Address the selected device as a Listener.

2. Send the secondary address if used.

3. Address the board itself as the GPIB Talker.

4. Send the command bytes to the device.

5. Address the board itself as the Listener.

6. Address the selected device as the Talker.

7. Send the secondary address if used.

8. Read the response from the device.

9. Send the GPIB Unlisten (UNL) message.

10. Send the GPIB Untalk (UNT) message.

The original GPIB library interface is comprised of two different types of
routines: Board I/O and Device I/O. These routines are described in
Chapter 3, GPIB 488.1 Library Reference. You can program the board
using either Board I/O routines or Device I/O routines to perform the
sequence of operations outlined above.

The 488.2 library is all “Board I/O” in that you always supply the board ID
and the device address. Refer to Chapter 4, GPIB 488.2 Library Reference.

Device I/O
It is usually easier to use the Device I/O routines. Device I/O is very simple
to use and understand. Device I/O routines are higher-level routines which
conceal most of the underlying complexity of GPIB operations. The Device
I/O routines automatically take care of all of the low-level details involving
GPIB messages and addressing. For example, to accomplish the seven
steps listed above, you use only three routines:

• ibdev—to open the device

• ibwrt—to send the instrument command

• ibrd—to read the data back from the device

Chapter 2 Programming with the GPIB Library

GPIB-488 2-3 Programming Reference Manual

Board l/O
In comparison, the Board I/O routines are low-level routines. If you use
them, you must understand how the GPIB operates in detail. Generally, the
only time you need to use Board I/O is if it is impossible to perform the
same operation using device I/O, such as passing control from one
controller to another.

To perform the same task as the steps outlined in Device vs. Board I/O
(send a command to a device), you need to know the codes for the various
forms of addressing and the codes for the GPIB Unlisten and Untalk
commands.

Use the routines in this sequence:

ibfind—to open the board

ibcmd—to send the address of the talker and listener

ibwrt—to send the command to the device

ibcmd—to send the address of the talker and listener

ibrd—to read the data back from the device

ibcmd—to send the Unlisten (UNL) and Untalk (UNT) commands

Device Handles
Most of the routines in the 488.1 library have a device handle as the first
argument. The first GPIB call in your program is usually ibfind or
ibdev. These routines “open” a board or device and return a GPIB board
or device handle. If you pass the name of a board to ibfind, it returns a
board handle. Likewise, if a device name is passed or ibdev is used, a
device handle is returned. Some library routines only work with device
handles, some only with board handles, and some with both.

Global Variables
The following global variables are available in the gpib-32.dll
interface:

ibsta Status Word

iberr Error Codes

ibcnt, ibcntl Count Variables (short/long)

Chapter 2 Programming with the GPIB Library

Programming Reference Manual 2-4 GPIB-488

The iberr variables are briefly explained here. For additional information
about iberr, refer to Appendix C, IBERR.

For additional information about ibcnt and ibcntl, refer to the routines
that return them.

The following global state functions also are available with the
gpib488.dll interface:

Ibsta() Status Word

Iberr() Error Codes

Ibcnt() Count Variable

Ibsta(), Iberr(), and Ibcnt() are equivalent to ibsta, iberr, and
ibcntl, respectively.

ibsta/Ibsta()—The Status Word
Every GPIB library routine returns a 16-bit status word. This describes the
current condition of the GPIB bus lines and interface board. Possible values
and their meanings are listed in Appendix B, IBSTA.

iberr/Iberr()—The Error Variable
If a GPIB error occurs during a routine, its corresponding error code is
returned into the variable iberr. Possible error codes and their meanings
are listed in Appendix C, IBERR.

ibcnt and ibcntl/Ibcnt()—Count Variables
These variables contain an integer that describes how many bytes were
actually transferred during a read or write operation. ibcnt is an integer
value (16 bits wide) and Ibcnt/ibcntl are long integer values (32 bits
wide).

Thread Variables
The following thread variables are available in the gpib-32.dll
interface:

ThreadIbsta() Status Word

ThreadIberr() Error Codes

ThreadIbcnt(), Count Variables (Short/Long)
ThreadIbcntl()

Chapter 2 Programming with the GPIB Library

GPIB-488 2-5 Programming Reference Manual

ThreadIbsta(), ThreadIberr(), and ThreadIbcnt()/
ThreadIbcntl() are equivalent to ibsta, iberr, and ibcnt/ibcntl,
respectively, except they represent the current status on a per-thread level.

The following thread local variables are available in the gpib488.dll
interface:

ThreadIbsta() Status Word

ThreadIberr() Error Codes

ThreadIbcnt() Count Variable

ThreadIbsta(), ThreadIberr(), and ThreadIbcnt() are equivalent
to ibsta, iberr, and ibcntl, respectively, except they represent the
current status on a per-thread level. ThreadIbcntl() also is available, but
is defined to be an alias for ThreadIbcnt().

GPIB-488 3-1 Programming Reference Manual

3
GPIB 488.1 Library Reference

This chapter describes each of the 488.1 GPIB library routines. A short
description of the routine, its syntax, parameters, any values that are
returned, any special usage notes, and an example are included for each
routine. The routines are listed in alphabetical order. The following table
lists all of the 488.1 GPIB library routines. A full description of each
routine follows the table.

Table 3-1. 488.1 Library routines

Name Description

ibask Returns software configuration information

ibcac Become Active Controller

ibclr Clear specified device

ibcmd Send GPIB commands from a string

ibcmda Send GPIB commands asynchronously from a string

ibconfig Configure the driver

ibdev Open and initialize a device when the device name is unknown

ibdma Enable/Disable DMA

ibeos Change EOS

ibeot Change EOI

ibfind Open a device and return its unit descriptor

ibgts Go from Active Controller to standby

ibist Define IST bit

iblines Return status of GPIB bus lines

ibln Check for presence of device on bus

ibloc Go to Local

ibonl Place device online/offline

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-2 GPIB-488

ibpad Change Primary address

ibpct Pass Control

ibppc Parallel Poll Configure

ibrd Read data to a string

ibrda Read data asynchronously

ibrdf Read data to file

ibrpp Conduct parallel poll

ibrsc Request/release system control

ibrsp Return serial poll byte

ibrsv Request service

ibsad Define secondary address

ibsic Send IFC

ibsre Set/clear REN line

ibstop Stop asynchronous I/O operation

ibtmo Define time limit

ibtrg Trigger selected device

ibwait Wait for event

ibwrt Write data from a string

ibwrta Write data asynchronously from a string

ibwrtf Write data from file

Table 3-1. 488.1 Library routines (Continued)

Name Description

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-3 Programming Reference Manual

IBASK
Returns software configuration information.

Syntax
C (gpib-32.dll) ibask (int boarddev, int option, unsigned int

*value)

C (gpib488.dll) ibask (int boarddev, int option, unsigned int

*value)

Parameters
boarddev A board handle or device handle

option Specifies which configuration item to return; see Table 3-2.

value Current value of specified item returned here

Table 3-2. ibask Options

Option Valid for Information returned

IbaPAD bd/dev Primary address of board or device

IbaSAD bd/dev Secondary address of board or dev

IbaTMO bd/dev The current timeout value for I/O commands (refer to
ibtmo for a list of possible values)

IbaEOT bd/dev 0 = EOI asserted at end of write

non zero = EOI is not asserted at end of write

IbaPPC bd The current parallel poll configuration of the board

IbaREADDR dev 0 = Forced re-addressing is disabled

non zero = Forced re-addressing is enabled.

IbaAUTOPOLL bd 0 = automatic at end of write

non zero = automatic serial poll is disabled

IbaCICPROT bd 0 = CIC protocol is disabled

non zero = CIC protocol is enabled

IbaSC bd 0 = board is not system controller

non zero = board is system controller

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-4 GPIB-488

IbaSRE bd 0 = do not automatically assert REN line when system
controller

non zero = automatically assert REN line when system
controller

IbaEOSrd bd/dev 0 = ignore EOS char during reads

non zero = terminate read when EOS char is received

IbaEOSwrt bd/dev 0 = don’t assert EOI line when EOS char is sent

non zero = assert EOI line whenever EOS char is sent

IbaEOScmp bd/dev 0 = 7 bit compare is used when checking for EOS char

non zero = 8 bit compare is used when checking for EOS
char

IbaEOSchar bd/dev 0 = The current EOS char of board or device

IbaPP2 bd 0 = board is in remote parallel poll configuration

non zero = board is in local parallel poll configuration

IbaTiming bd Current T1 timing delay 1 = Normal (2 us), 2 = High
Speed (500 ns), 3 = Very High Speed (350 ns)

IbaDMA bd 0 = The interface does not use DMA for GPIB transfers

non zero = The interface uses DMA for GPIB transfers

IbaSendLLO bd 0 = LLO command is not sent when device is put online

non zero = LLO command is sent

IbaSPollTime dev Length of time to wait for parallel poll response before
timing out

IbaPPollTime bd Length of time to wait for parallel port response

IbaEndBitIsNormal bd 0 = The END bit of ibsta is not set when the EOS
character is received without EOI.

non zero = The END bit of ibsta is set when the EOS
character is received

Table 3-2. ibask Options (Continued)

Option Valid for Information returned

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-5 Programming Reference Manual

Returns
Ibsta will contain a 16-bit status word; refer to Appendix B, IBSTA.

Iberr will contain an error code if an error occurred

value will contain the current value of selected configuration item

Usage Notes
Some options apply to boards, some to devices and some apply to both boards and devices.

A program may modify many of these configuration items via library routines (for example,
ibconfig IbcTMO, ibconfig IbcPAD, etc.). In that case, ibask returns the modified
version.

Example
Returns the ist bit of a device at PAD 3.

C int dev;

unsigned long istbit;

dev = ibdev (0,3,0,13,1,0);

ibask (dev, IbaIst, &istbit);

IbaUnAddr dev 0 = The untalk and unlisten (UNT, UNL) are not sent after
each device level read/write

non zero = The UNT, UNL commands are sent after each
device lever read/write

IbaIst bd The individual status (ist) bit of the interface

IbaBNA dev Device’s access board

IbaEOS bd/dev EOS termination mode and character. The lower byte of
the value returned is the EOS character. The returned
value upper byte third bit determines whether reads are
terminated when the EOS character is detected. The
returned value upper byte fourth bit determines whether
EOI is set with the EOS character on writes. The returned
value upper byte fifth bit determines whether all 8 bits of
the EOS character should be compared; otherwise, only 7
bits are compared.

Table 3-2. ibask Options (Continued)

Option Valid for Information returned

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-6 GPIB-488

IBCAC
Makes the specified board the Active Controller.

Syntax
C (gpib-32.dll) ibcac (int board, int sync)

C (gpib488.dll) ibcac (int board, int sync)

Parameters
board is an integer containing the board handle

sync specifies if the GPIB board is to take control synchronously or asynchronously. If sync
is 0, the GPIB board takes control asynchronously. Otherwise, it takes control synchronously
(immediately).

When the board takes control, the GPIB interface board asserts the ATN line. When taking
control synchronously, the board waits for any data transfer to be completed and then takes
control. Note that if synchronous take control is specified while an ibrd or ibwrt operation
is in progress, the synchronous take control may not occur if a timeout or other error occurs
during the ibrd/ibwrt.

In comparison, if the board is to take control asynchronously, it takes control immediately,
without waiting for any data transfers to be completed.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. In particular, the ECIC error occurs if
the specified GPIB board cannot become an Active Controller.

Usage Notes
This routine is only used when doing board level I/O.

Example
GPIB board 1 takes control asynchronously.

C ibcac (brd1, 0);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-7 Programming Reference Manual

IBCLR
Clears a specified device.

Syntax
C (gpib-32.dll) ibclr (int device)

C (gpib488.dll) ibclr (int device)

Parameters
device is an integer containing the device handle.

Returns

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this routine is executed, the GPIB Interface Board (which is currently the CIC) sends
its talk address over the GPIB. This makes it the active talker. It then unlistens all devices and
addresses the specified device as a listener. Finally, the GPIB board clears the device, by
sending the Selected Device Clear message.

Example
This example uses ibdev to return the unit descriptor for a device at PAD 5, a DMM, into the
variable dmm. The DMM is then cleared.

C int dmm;

dmm = ibdev(0,5,0,13,1,0);

/*open instrument*/

ibclr (dmm);

/* clear it */

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-8 GPIB-488

IBCMD
Sends GPIB commands.

Syntax
C (gpib-32.dll) ibcmd (int board, char cmnd[], long bytecount)

C (gpib488.dll) ibcmd (int board, const char * cmnd, size_t

bytecount)

Parameters
board is an integer containing the board handle.

cmnd is the command string to be sent. This string is comprised of GPIB multiline commands.
These commands are listed in Appendix A, Multiline Interface Messages.

bytecount is the number of command bytes to be transferred.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Ibcnt, ibcntl will contain the number of bytes that were transferred. ibcnt is a 16-bit
integer. Ibcnt or ibcntl are 32-bit integers. If the requested count was greater than 64 K,
use ibcntl or Ibcnt instead of ibcnt.

Usage Notes
This routine passes only GPIB commands. It cannot be used to transmit programming
instructions (data) to devices. Use the ibrd and ibwrt routines for this purpose.

This routine terminates when any one of the following takes place:

• Commands transfer is successfully completed.

• An error occurs

• A timeout occurs

• A Take Control (TCT) command is sent

• The system controller asserts the IFC (Interface Clear) line.

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-9 Programming Reference Manual

Example
This example prepares the board to talk and addresses three devices (at addresses 8, 9, and
10) to listen.

C char *command;

command = "\0x3f\0x5f\0x40\0x28\0x29\0x2a";

ibcmd (board, command, 6);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-10 GPIB-488

IBCMDA

Note Asynchronous I/O is not explicitly supported and will be treated as synchronous.

Transfers GPIB commands asynchronously from a string.

Syntax
C (gpib-32.dll) ibcmda (int board, char cmnd[], long bytecount)

C (gpib488.dll) ibcmda (int board, const char * cmnd, size_t

bytecount)

Parameters
board is an integer containing the board handle.

cmnd is the command string to be sent. This string is comprised of GPIB multiline
commands.These commands are listed in Appendix A, Multiline Interface Messages.

bytecount is the number of command bytes to be transferred. Note that in C, although this
parameter is of type long, integer values and variables can also be passed.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. An ECIC error is generated if the GPIB
Interface Board specified is not the Active Controller. If no listening devices are found, the
ENOL error is returned.

Ibcnt, ibcntl will contain the number of bytes that were transferred. ibcnt is a 16-bit
integer. Ibcnt or ibcntl are 32-bit integers. If the requested count was greater than 64 K,
use Ibcnt or ibcntl instead of ibcnt.

Usage Notes
This routine passes only commands. It is not used to transmit programming instructions (data)
to devices. Use the ibrd/ibwrt routines for this purpose.

Example
This example prepares the board to talk and addresses three devices (at addresses 8, 9, and
10) to listen. ibcmda executes in the background and the program continues into the WHILE
loop. This loop calls ibwait to update ibsta and checks ibsta to see if ibcmda has
completed or an error has occurred. The program may do anything within the WHILE loop
except make other GPIB I/O calls.

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-11 Programming Reference Manual

C char *command;

command = "\0x3f\0x5f\0x40\0x28\0x29\0x2a";

ibcmda (board, command, 6);

while ((Ibsta() & (CMPL+ERR)) == 0)

ibwait (board, 0);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-12 GPIB-488

IBCONFIG
Changes configuration parameters.

Syntax
C (gpib-32.dll) ibconfig (int boarddev, unsigned int option,

unsigned int value)

C (gpib488.dll) ibconfig (int boarddev, unsigned int option,

unsigned int value)

Parameters
boarddev is an integer containing either a board handle or device handle.

option is a number which represents the configuration option to be changed. See Table 3-3.

value is the new configuration option value. Allowed values differ according to the option
being programmed.

Table 3-3. ibconfig Options

Option Valid for Description

IbcPAD bd/dev New Primary Address. Available primary addresses
range from 0 to 30. value can be from 0 to 30 decimal.

IbcSAD bd/dev New Secondary Address. There are 31 secondary
addresses available. value can be 0 or from 96 to 126
decimal.

IbcTMO bd/dev Timeout Value. The approximate time that I/O
functions take before a timeout occurs. value is a
number from 0 to 15 which corresponds to timeout
values ranging from 10 usec to 100 sec.

IbcEOT bd/dev Enable/disable END message. If this option is enabled,
the EOI line is asserted when the last byte of data is sent.
If value = 0, then the EOI line is not asserted. If value
is non zero, the EOI line is asserted.

IbcPPC bd Parallel Poll Configure. Redefines the parallel poll
configuration bytes. value can be 0, or from 96 to 126
decimal.

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-13 Programming Reference Manual

IbcREADDR dev Forced re-addressing. If value = 0, forced
re-addressing is disabled

non zero = Forced re-addressing is enabled.

IbcAUTOPOLL bd Enable/Disable Automatic Serial Polling. If value is 0,
then Automatic Serial Polling is disabled. Otherwise, it
is enabled.

IbcCICPROT bd CIC Protocol. If value is 0, then CIC Protocol is not
used. Otherwise, CIC Protocol is used.

IbcIRQ bd Enable/Disable Hardware Interrupts. If value is 0, then
hardware interrupts are disabled, otherwise value
specifies the IRQ level the board uses to generate
interrupts.

IbcSC bd Request/Release System Control. If value is 0, the
board is not able to support routines requiring system
controller capability.

If value is non-zero, the board can support routines
requiring system controller capability.

IbcSRE bd Assert/Unassert REN. If value is 0, the REN line is
unasserted. Otherwise, the REN line is asserted.

IbcEOS bd/dev EOS termination mode and character. The value lower
byte determines the EOS character. The value upper
byte third bit determines whether reads are terminated
when the EOS character is detected. The value upper
byte fourth bit determines whether EOI is set with the
EOS character on writes. The value upper byte fifth bit
determines whether all 8 bits of the EOS character
should be compared; otherwise, only 7 bits are
compared.

IbcEOSrd bd/dev Recognize EOS. If value is non-zero, a read is
terminated when the End-Of-String (EOS) character is
detected. Otherwise, EOS detection is disabled.

IbcEOSwrt bd/dev Assert EOI. If value is non-zero, then EOI is asserted
when the EOS character is sent. Otherwise, EOI is not
asserted.

Table 3-3. ibconfig Options (Continued)

Option Valid for Description

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-14 GPIB-488

IbcEOScmp bd/dev 7/8-bit Comparison. If value is zero, compare the
low-order 7 bits of the EOS character. Otherwise,
compare 8-bits.

IbcEOSchar bd/dev End-Of-String (EOS) Character. value is the new EOS
character. value can be any 8-bit value.

IbcPP2 bd Parallel Poll Remote/Local. If value is zero, then the
GPIB Interface Board is remotely configured for a
parallel poll by an external Controller. Otherwise, the
GPIB interface board accepts parallel poll configuration
commands from your application program.

IbcTIMING bd Handshake Timing. If value is 1, normal timing (> 2
*sec.) is used. If value is 2, high-speed timing (> 500
nsec.) is used. If value is 3, very high-speed timing (>
350 nsec.) is used.

IbcDMA bd Enable/Disable DMA. If value is zero, DMA transfers
are disabled, otherwise value specifies the DMA
channel that the board uses.

IbcSendLLO bd Send Local Lockout. If value is 0, LLO command is
not sent when device is put online; non zero = LLO
command is sent

IbcSPollTime bd/dev Serial Poll Timeout. value ranges from 0 to 17 specify
timeouts of 10 msecs to 1000 secs. Refer to Table 3-6,
Timeout Codes.

IbcEndBitIsNormal bd/dev If set, causes END status to be set on receipt of EOS.

IbcPPollTime bd Parallel Poll Timeout. value ranges from 0 to 17
specify timeouts of 10 msecs to 1000 secs. Refer to
Table 3-6, Timeout Codes.

IbcUnAddr dev If value is 0, the untalk and unlisten (UNT, UNL) are
not sent after each device level read/write; non zero =
the UNT, UNL commands are sent after each device
lever read/write

IbcIst bd Sets the individual status bit returned during a parallel
poll. If value is 0, the bit is cleared; non zero = bit is set.

Table 3-3. ibconfig Options (Continued)

Option Valid for Description

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-15 Programming Reference Manual

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. If no error occurred, the previous
setting of the configured item is returned in Iberr.

Usage Notes
None.

Example
This example illustrates how to change the timeout value for GPIB Interface Board 1 to 300
msec.

C int device;

device = ibfind ("gpib1");

ibconfig (device, IbcTMO, 10);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-16 GPIB-488

IBDEV
Obtains a device handle for a device whose name is unknown. It opens and initializes the
device with the configuration given.

Syntax
C (gpib-32.dll) device = ibdev (int boardindex, int pad, int sad,

int timeout, int eot, int eos)

C (gpib488.dll) device = ibdev (int boardindex, int pad, int sad,

int timeout, int eot, int eos)

Parameters

boardindex identifies the GPIB Interface Board with which the device descriptor is
associated. It is an index in the range 0 to (total number of boards - 1).

pad is the primary address of the device. Available addresses range from 0 to 30.

sad is the secondary address of the device. There are 31 secondary addresses available. value
can be 0, or from 96 to 126 decimal; see Appendix A, Multiline Interface Messages. If 0 is
selected, the driver will not expect the device to require a secondary address.

timeout is the timeout of the device. This is a value from 0 to 17 which corresponds to
timeout value ranging from 10 usec to 1000 sec. See Table 3-6, Timeout Codes, for a list of
timeouts and corresponding values.

eot when writing to a device, eot specifies whether or not to assert EOI with the last data byte.
If eot is non-zero, EOI is asserted. If eot is 0, EOI is not asserted.

eos specifies the End-Of-String termination mode to be used when communicating with the
device. See Table 3-4, Selecting EOS, for a description of special formatting features of this
argument.

Returns
device will contain the assigned descriptor or a negative number. If device is a negative
number, then an error occurred. Two types of errors can occur:

• An EDVR or ENEB error is returned if a device is not available or the board index specifies
a non-existent board.

• An EARG error is returned if illegal values are given for pad, sad, timeout, eot, eos.

Iberr will contain an error code, if an error occurred.

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-17 Programming Reference Manual

Usage Notes
This routine returns the device handle of the first available user-configurable device it finds
in the device list.

Example
This example opens an available device, associates it with GPIB interface board 1, and assigns
it the following device configuration parameters.

• primary address = 3

• secondary address = 19 (115 decimal, 73 hex)

• timeout = 10 sec

• Assert EOI

• EOS Disabled

• The new device handle is returned.

C int device;

device = ibdev(1, 3, 0x73, 13, 1, 0);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-18 GPIB-488

IBDMA

Note ibdma() is deprecated. Use ibconfig() with the IbcDMA option instead.

Enables/Disables DMA.

Syntax
C (gpib-32.dll) ibdma (int board, int dma)

C (gpib488.dll) ibdma (int board, int dma)

Parameters
board is an integer containing the board handle.

dma is an integer which indicates whether DMA is to be enabled or disabled for the specified
GPIB board. If dma is non-zero, all read and write operations between the GPIB board and
memory are performed using DMA. Otherwise, programmed I/O is used.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. An ECAP error results if you tried to
enable DMA operations for a board which does not support DMA operation. If no error
occured, the previous value of dma is stored in Iberr.

Usage Notes
The GPIB Interface Board must have been configured for DMA operations in order for this
routine to be executed successfully. This routine is useful for alternating between
programmed I/O and DMA operations. This call remains in effect until one of the following
occurs:

• Another ibdma call is made.

• ibonl or ibfind is called.

• The program is re-started.

• The maximum DMA transfer length in Windows is 64 K bytes.

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-19 Programming Reference Manual

Example
This example enables DMA transfers for GPIB Interface Board 1. It
assumes that the DMA channel was previously selected in your
configuration program.

C int board;

board = ibfind ("gpib1");

ibdma (board, 1);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-20 GPIB-488

IBEOS

Note ibeos() is deprecated. Use ibconfig() with the IbcEOS option instead.

Changes or disables End-Of-String termination mode.

Syntax
C (gpib-32.dll) ibeos (int boarddev, int eos)

C (gpib488.dll) ibeos (int boarddev, int eos)

Parameters
boarddev is an integer containing the board/device handle.

eos is an integer that defines which termination mode and what EOS character are to be used,
as shown in Table 3-4, Selecting EOS.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. If an error does not occur the previous
value of eos is stored in Iberr.

Usage Notes
This call only defines an EOS byte for a board or device. It does not cause the handler to
automatically send that byte when performing writes. Your application must include the EOS
byte in the data string it defines.

Table 3-4. Selecting EOS

Method Description

eos

High Byte Low Byte

A Terminate read when EOS is detected. Can be used
alone or in combination with Method C. (Constant =
REOS)

00000100 EOS
character

B Set EOI with EOS on write function. Can be used alone
or in combination with Method C. (Constant = XEOS)

00001000 EOS
character

C Compare all 8 bits of EOS byte rather than low 7 bits for
all read and write functions. (Constant = BIN)

00010000 EOS
character

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-21 Programming Reference Manual

If this call defines an EOS for a device, then the defined EOS is used for all reads and writes
involving that device. Likewise, if the call defines an EOS for a board, then all reads and
writes involving that board will use that EOS.

This call remains in effect until one of the following occurs:

• Another ibeos call is made.

• ibonl or ibfind is called.

• The system is re-started.

Example
This example configures the GPIB system to send the END message whenever the line feed
character is sent to a particular device. Method B described in Table 3-4, Selecting EOS, is
used (XEOS).

C int device;

ibeos (device, XEOS + '\n');

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-22 GPIB-488

IBEOT

Note ibeot() is deprecated. Use ibconfig() with the IbcEOT option instead.

Enables/Disables assertion of EOI on write operations.

Syntax
C (gpib-32.dll) ibeot (int boarddev, int eot)

C (gpib488.dll) ibeot (int boarddev, int eot)

Parameters
boarddev is an integer containing the board or device handle. Here it represents a GPIB
Interface Board or a device. This value is obtained by calling the ibfind routine.

eot is an integer which defines whether or not EOI is to be asserted. If eot is non-zero then
EOI is asserted automatically when the last byte of the message is sent. If eot is 0, then EOI
is not asserted.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. If an error does not occur, the previous
value of EOT is stored in Iberr.

Usage Notes
This call is used to temporarily change the default EOT setting.

It is useful to automatically send EOI with the last data byte in situations where variable
length data is being sent. When EOI is enabled, you do not need to send an EOS character.

If this call specifies a device, then EOI is asserted/unasserted on all writes to that device.
Likewise, if the call specifies a board, then EOI is asserted/unasserted on all writes from that
board. To assert EOI with an EOS, use the ibeos routine. This call remains in effect until one
of the following occurs:

• Another ibeot call is made.

• IBONL or IBFIND is called.

• The system is re-started.

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-23 Programming Reference Manual

Example
Assert EOI with last byte of all write operations from GPIB board 1.

C int device;

device = ibfind ("gpib1");

ibeot (device,1);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-24 GPIB-488

IBFIND
Opens a board or device and returns the handle associated with a given name.

Syntax
C (gpib-32.dll) boarddev = ibfind (char name[])

C (gpib488.dll) boarddev = ibfind (const char * name)

Parameters
name is the string specifying the board or device name.

Returns
boarddev will contain the device handle associated with the given name. If a negative
number is returned, this indicates that the call has failed. This most often happens when the
specified name is does not match the default/configured board or device name.

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This call is also opens the device/board and initializes the software parameters to their default
configuration settings. See ibonl.

Using ibfind to obtain device descriptors is useful only for compatibility with existing
applications. New applications should use ibdev instead of ibfind.

Example
This example returns the device handle associated with the device named “DEV5” to the
variable dmm. If the device name is not found, the program will jump to an error routine.

C dmm = ibfind("DEV5");

if (dmm < 0) error ();

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-25 Programming Reference Manual

IBGTS
Puts an Active Controller in Standby mode.

Syntax
C (gpib-32.dll) ibgts (int board, int handshake)

C (gpib488.dll) ibgts (int board, int handshake)

Parameters
board is an integer containing the board handle.

handshake determines whether or not the shadow handshake option is to be activated. If
handshake is non-zero, then the GPIB shadow handshake option is activated. This means
that the GPIB board shadow handshakes the data transfer as an acceptor and when the END
message is detected, the GPIB board enters a Not Ready For Data (NRFD) handshake
hold-off state on the GPIB. Thus, the GPIB board participates in the data handshake as an
Acceptor without actually reading the data. It monitors the transfers for the END message and
holds off subsequent transfers. Using this mechanism, the GPIB board can take control
synchronously on a subsequent operation like ibcmd or ibrpp.

If handshake is 0, then no shadow handshake or holdoff is done.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. The ECIC error occurs if the board is
not an Active Controller.

Usage Notes
This call makes the GPIB board go to Controller Standby state and unasserts the ATN line if
it is initially the Active Controller. This allows transfers between GPIB devices to occur
without the GPIB board's intervention.

Before performing an ibgts with a shadow handshake, use the ibconfig function with the
IbcEOS option to define/disable EOS character detection.

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-26 GPIB-488

Example
This example uses the ibcmd routine to instruct GPIB board 1 to unlisten
all devices (ASCII ?, hex 3F), and then to address a Talker at MTA26
(ASCII Z, hex 5A) and a Listener at MLA11 (ASCII +, hex 2B). ibgts is
then called to unassert the ATN line and place the GPIB board in Standby
mode. This action allows the Talker to send messages to the Listener. Note
that the GPIB commands/addresses are coded using printable ASCII
characters, for example, “?Z+”.

C int gpib1;

gpib1 = ibfind ("GPIB1");

ibsic (gpib1);

ibcmd (gpib1, "?Z+", 3);

ibgts (gpib1, 1);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-27 Programming Reference Manual

IBIST

Note ibist() is deprecated. Use ibconfig() with the IbcIst option instead.

Sets/Clears the IST (Individual Status) Bit of the GPIB board for parallel polls.

Syntax
C (gpib-32.dll) ibist (int board, int statusbit)

C (gpib488.dll) ibist (int board, int statusbit)

Parameters
board is an integer containing the board handle.

statusbit indicates whether the IST bit is to be cleared or set. If statusbit is non-zero,
then the IST bit is set. Otherwise, if statusbit = 0, the IST bit is cleared.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. If an error does not occur, the previous
IST value is stored in Iberr.

Usage Notes
This routine is used when the GPIB Interface is not the Active Controller.

IST should be SET to indicate to the controller that service is required.

Example
This example clears GPIB Board 1's IST bit.

C int gpib1;

gpib1 = ibfind ("GPIB1");

ibist (gpib1, 0);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-28 GPIB-488

IBLINES
Returns the status of the GPIB control lines.

Syntax
C (gpib-32.dll) iblines (int board, short *clines)

C (gpib488.dll) iblines (int board, short *clines)

Parameters
board is an integer containing the board handle.

Returns
clines contains a valid mask and GPIB control line state data. Low-order bytes (bits 0
through 7) contain the mask indicating the capability of the GPIB interface board to sense the
status of each GPIB control line. Upper bytes (bits 8 through 15) contain the GPIB control
line state information. The pattern of each byte is as follows:

To determine if a GPIB control line is asserted, first check the appropriate bit in the lower byte
to determine if the line can be monitored (indicated by a 1 in the proper bit position), then
check the corresponding bit in the upper byte. If the bit is set (1), the corresponding control
line is asserted. If the bit is clear (0), the control line is unasserted.

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Handshake Information:

• NRFD = Not Ready for Data

• NDAC = Not Data Accepted

• DAV = Data Valid

High

15 14 13 12 11 10 9 8

EOI ATN SRQ REN IFC NRFD NDAC DAV

7 6 5 4 3 2 1 0

Low (Mask)

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-29 Programming Reference Manual

Interface Management:

• ATN = Attention

• IFC = Interface Clear

• REN = Remote Enable

• SRQ = Service Request

• EOI = End or Identify

Usage Notes
In order for this call to function properly, all devices attached to the GPIB bus must adhere to
IEEE-488 specification.

Example

This example tests the state of the ATN line.

C #define ATNLINE = 0x40

short lines;

iblines (board, &lines);

if (lines & ATNLINE == 0)

printf ("ATN line cannot be monitored by this
GPIB board\n");

else ((lines >> 8) & ATNLINE) == 0)

printf ("ATN line is not asserted\n");

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-30 GPIB-488

IBLN
Check that a device is present on the bus.

Syntax
C (gpib-32.dll) ibln (int board, int pad, int sad, short* listen)

C (gpib488.dll) ibln (int board, int pad, int sad, short* listen)

Parameters
board is the board or device handle.

pad is the primary address of the GPIB device (0-30).

sad is the secondary address of the GPIB device (96-126 or 0x60-0x7e) or one of the constant
values NO_SAD or ALL_SAD.

listen is the variable that the result is returned to.

Returns

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code if an error occurred.

listen will contain 0 if no listener is found. Contains non-zero if a listener is found.

Usage Notes
Set sad = NO_SAD (0) if the device does not have a secondary address.

Set sad = ALL_SAD (-1) if you do not know the device’s secondary address and you want
all possible secondary addresses to be tested.

Example
This example tests for the presence of a device with a GPIB address of 4.

C int board, short listen;

board = ibfind (“GPIB0”);

ibln (board, 4, NO_SAD, &listen);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-31 Programming Reference Manual

IBLOC
Forces the specified board/device to go to local program mode.

Syntax
C (gpib-32.dll) ibloc (int boarddev)

C (gpib488.dll) ibloc (int boarddev)

Parameters
boarddev is an integer containing the device or board handle.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This routine is used to place boards or devices temporarily in local mode. If this routine
specifies a device, the following GPIB commands are sent:

• Talk address of the access board

• Secondary address of the access board

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device (as necessary)

• Go to Local (GTL)

If this routine specifies a board, the board is placed in a local state by sending the Return to
Local (RTL) message, if it is not locked in remote mode. The LOK bit of the status word
indicates whether the board is in a lockout state. The ibloc function is used to simulate a
front panel RTL switch if the computer is used as an instrument.

Example
Return GPIB board 1 to local state.

C int gpib1;

gpib1 = ibfind("GPIB1");

ibloc (gpib1);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-32 GPIB-488

IBONL
Enables/Disables a device/interface board for operation.

Syntax
C (gpib-32.dll) ibonl (int boarddev, int online)

C (gpib488.dll) ibonl (int boarddev, int online)

Parameters
boarddev is an integer containing the device/board handle.

online defines whether the device/board is to be enabled/disabled. If online is non-zero,
the device/board is enabled for operation (placed on-line). This restores the board/device to
its default settings. Otherwise, the board/device is placed off-line.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When a device is placed off-line, it is “closed”. This means that in order to perform any other
operations with this device, you will need to re-open it by calling the ibfind or ibdev
routine.

Example
This example restores the configuration of a device at PAD 1.

C int Dev;

Dev = ibdev (0,1,0,13,1,0);

ibonl (Dev, 1);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-33 Programming Reference Manual

IBPAD

Note ibpad() is deprecated. Use ibconfig() with the IbcPAD option instead.

Changes the primary address assigned to a device or interface board.

Syntax
C (gpib-32.dll) ibpad (int boarddev, int address)

C (gpib488.dll) ibpad (int boarddev, int address)

Parameters
boarddev is an integer containing the board or device handle.

address specifies the new primary GPIB address. Valid primary addresses range from 0 to
30 (0 to 1E hex).

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code if an error occurred. Contains the previous primary address
if no error occurred. EARG error occurs if address is out of range.

Usage Notes
This routine temporarily changes the configuration setting. It remains in effect until ibonl or
ibfind is called, ibpad is called again, or the system is re-started.

If a device is specified, its talk and listen addresses are assigned on the basis of address. Its
Listen Address equals address + 20 hex. Its Talk Address equals address + 40 hex. Thus,
if a primary address of 0D hex was specified, the corresponding Listen Address would be 2D
hex (MLA 13) and Talk Address would be 4D hex (MTA 13). If a board is specified, the board
is assigned the primary address defined by address. Refer also to ibconfig with the
IbcSAD option and IBONL.

Be sure that the address specified agrees with the GPIB address of the device. (Set with
hardware switches or by a software program. Refer to the device's documentation for more
information.)

Example
This example changes the primary GPIB address associated with a DVM at PAD 4 to 1C hex.

C int dvm;

dvm = ibdev (0,4,0,13,1,0);

ibpad (dvm, 0x1C);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-34 GPIB-488

IBPCT
Passes control to another device.

Syntax
C (gpib-32.dll) ibpct (int device)

C (gpib488.dll) ibpct (int device)

Parameters
device an integer containing the device handle.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This makes the specified device the Controller-In-Charge (CIC). The GPIB board goes to the
Controller Idle state and releases the ATN line.

The device that control is passed to must have Controller capability.

Example
This example makes a device at PAD 1 the Controller-In-Charge.

C int Dev;

Dev = ibdev (0,1,0,13,1,0);

ibpct(Dev);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-35 Programming Reference Manual

IBPPC
Enables/Disables parallel polling of the specified device.

Syntax
C (gpib-32.dll) ibppc (int boarddev, int command)

C (gpib488.dll) ibppc (int boarddev, int command)

Parameters

boarddev is an integer containing the board or device handle. This value is obtained by
calling the ibfind routine.

command is a valid parallel poll enable/disable message or 0. If command represents a PPE
message, then the device will use that message to respond to a parallel poll. Valid PPE
messages range from 60 to 6F hex. The PPE specifies the GPIB data line (DIO1 through
DIO8) on which the device is to respond and whether that line is to be asserted or unasserted.

The PPE byte is of the format:

Where SENSE indicates the condition under which the data line is to be asserted. The device
compares the value of the sense bit to its IST (individual status) bit and responds
appropriately. For example, if SENSE = 1, the device will drive the line TRUE if its IST = 1
or FALSE if IST = 0.

P2–P0 specify which GPIB data line should be used to respond to a parallel poll, as shown in
Table 3-5.

7 6 5 4 3 2 1 0

0 1 1 0 SENSE P2 P1 P0

Table 3-5. Values for P2–P0

P2 P1 P0 GPIB Data Line

1 1 1 DIO8

1 1 0 DIO7

1 0 1 DIO6

1 0 0 DIO5

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-36 GPIB-488

For example, if the PPE byte 01101011 (hex 6B) is sent, the device will drive DIO4 true if its
IST bit = 1, or false if its IST bit = 0.

If command is 0 or represents a PPD (Parallel Poll Disable) message, the current PPE
(Parallel Poll Enable) configuration is cancelled. Valid PPD messages range from 70 to 7F
hex. The PPD is of a similar format to the PPE byte, for example:

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. Contains the previous value of
command if no error occurs.

Usage Notes
If boarddev specifies a GPIB interface board, this routine sets the board's Local Poll Enable
(LPE) message to command.

If boarddev specifies a device, the GPIB Interface Board associated with the device
addresses itself as a Talker, unlistens all devices (sends a UNL), addresses the specified device
as a Listener, and sends the PPC command followed by a PPE or PPD command.

Example
This example configures a device at PAD 2 to send DIO4 true if its IST bit = 1.

C int dev2;

dev2 = ibdev (0,2,0,13,1,0);

ibppc (dev2, 0x6B);

0 1 1 DIO4

0 1 0 DIO3

0 0 1 DIO2

0 0 0 DIO1

7 6 5 4 3 2 1 0

0 1 1 0 SENSE P2 P1 P0

Table 3-5. Values for P2–P0 (Continued)

P2 P1 P0 GPIB Data Line

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-37 Programming Reference Manual

IBRD
Reads data from a device/interface board into a string.

Syntax
C (gpib-32.dll) ibrd (int boarddev, char buf[], long bytecount)

C (gpib488.dll) ibrd (int boarddev, char * buf, size_t bytecount)

Parameters
boarddev is an integer containing the board or device handle.

buf is the storage buffer for the data. Up to 2 GB (231-1 bytes) can be stored. String size may
be limited by the language you are using. Check documentation for your language.

bytecount specifies the maximum number of bytes to read.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code of the first error detected, if an error occurred. An EADR
results if the specified GPIB Interface Board is an Active Controller but has not been
addressed to listen. An EABO error results if a timeout occurs.

Ibcnt, ibcntl will contain the number of bytes that were read. ibcnt is a 16-bit integer.
Ibcnt and ibcntl are 32-bit integers. If the requested count was greater than 64 K, use
Ibcnt or ibcntl instead of ibcnt.

Usage Notes
A read will terminate when one of the following occurs:

• The allocated buffer becomes full.

• An error is detected.

• The time limit is exceeded.

• A terminator (or EOI) is detected.

If boarddev specifies a device, the specified device is addressed to talk and its associated
access board is addressed to listen.

If boarddev specifies a GPIB Interface board, you must have already addressed a device as
a talker and the board as a listener. If the board is the Active Controller, it will unassert ATN
in order to receive data. This routine leaves the board in that state.

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-38 GPIB-488

Example
This example reads 90 characters of data from a device at PAD 5.

C int dev5;

char rd [90];

dev5 = ibdev (0,5,0,13,1,0);

ibrd (dev5, rd, 90);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-39 Programming Reference Manual

IBRDA

Note Asynchronous I/O is not explicitly supported and will be treated as synchronous.

Reads data asynchronously from a device/interface board into a string.

Syntax
C (gpib-32.dll) ibrda (int boarddev, char buf[], long bytecount)

C (gpib488.dll) ibrda (int boarddev, char * buf, size_t bytecount)

Parameters
boarddev is an integer containing the device/board handle.

buf is the storage buffer for the data. Up to 2 GB (231-1 bytes) can be stored. String size may
be limited by the language you are using. Check documentation for your language.

bytecount specifies the maximum number of bytes to read.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code of the first error detected, if an error occurred. An EADR
results if the specified GPIB board is an Active Controller but has not been addressed to listen.
An EABO error results if a timeout occurs.

Ibcnt, ibcntl will contain the number of bytes that were read. ibcnt is a 16-bit integer.
Ibcnt and ibcntl are 32-bit integers. If the requested count was greater than 64 K, use
Ibcnt or ibcntl instead of ibcnt.

Example
In this example, ibwrt sends the command “DUMP” to a device. The device responds by
sending back a large block of data. ibrda begins a transfer of 5000 bytes in the background
and the program continues on into the WHILE loop. The WHILE loop calls ibwait with
MASK set to 0 to update Ibsta. The WHILE loop checks Ibsta to see if ibrda has
completed, or if an error has occurred. The program may do anything else within the WHILE
loop except make other GPIB I/O calls.

C char readbuffer[5000];

ibwrt (device, "DUMP");

ibrda (device, readbuffer, 5000);

while ((Ibsta() & (CMPL+ERR)) == 0)

ibwait (device, 0)

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-40 GPIB-488

IBRDF
Reads data from the GPIB into a file.

Syntax
C (gpib-32.dll) ibrdf (int boarddev, char filename [])

C (gpib488.dll) ibrdf (int boarddev, const char * filename)

Parameters
boarddev is an integer containing the board or device handle.

filename is the name of the file (up to 250 characters, including drive/path) in which the data
is to be stored. Be certain to specify a drive and path if necessary. This file is automatically
opened as a binary file. It is created if it does not already exist.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. An EFSO error is generated if the file
can not be opened, created, found, written to, or closed.

Ibcnt, ibcntl will contain the number of bytes that were read. ibcnt is a 16-bit integer.
Ibcnt and ibcntl are 32-bit integers. If the requested count was greater than 64 K, use
Ibcnt or ibcntl instead of ibcnt.

Usage Notes
A read terminates when one of the following occurs:

• The allocated buffer becomes full.

• An error is detected.

• The time limit is exceeded.

• A terminator (or EOI) is detected.

• A DCL or SDC command is received from the Active Controller.

If boarddev specifies a device, the specified device is addressed to talk and its associated
access board is addressed to listen.

If boarddev specifies a GPIB Interface board, you must have already addressed a device as
a talker and the board as a listener. If the board is the Active Controller, it unasserts ATN in
order to receive data. This routine leaves the board in that state.

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-41 Programming Reference Manual

Example
This program sends the command “DUMP” to a device. The device responds by sending data
back. ibrdf reads the incoming data and stores it in the file called gpib.dat on the C drive.

C ibwrt (boarddev, "DUMP");

ibrdf (boarddev, "c:\\gpib.dat");

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-42 GPIB-488

IBRPP
Initiates a parallel poll.

Syntax
C (gpib-32.dll) ibrpp (int boarddev, char *command)

C (gpib488.dll) ibrpp (int boarddev, char *command)

Parameters
boarddev is an integer containing the device or board handle.

command will contain the response to the parallel poll.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
If this routine is called specifying a GPIB Interface Board, the board parallel polls all
previously configured devices. If the routine is called specifying a device, the GPIB Interface
board associated with the device conducts the parallel poll. Note that if the GPIB Interface
Board to conduct the parallel poll is not the Controller-In-Charge, an ECIC error is generated.

Before executing a parallel poll, the ibppc function should configure the connected devices
with ibppc to specify how they should respond to the poll.

Example
This program configures two devices for a parallel poll. It then conducts the poll. It is assumed
that voltmeter and scope have already been set by opening the devices with an ibfind and
board has been set by opening the board with an ibfind.

Both devices indicate that they want service by setting their first bit to 1. The first ibppc
specifies that the first device (voltmeter) should drive the DIO1 line high when its first line
goes high. The second ibppc specifies that the second device (scope) should drive the DIO2
line high when its first bit goes high. The ibrpp conducts the poll and checks DIO1 and DIO2
to see if either device is requesting service.

C int voltmeter, scope, board;

char pollbyte;

ibppc (voltmeter, 0x68);

ibppc (scope, 0x69);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-43 Programming Reference Manual

ibrpp (board, &pollbyte);

if (pollbyte & 1)

printf ("Voltmeter is requesting service\n");

if (pollbyte & 2)

printf ("Oscilloscope is requesting
service/n");

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-44 GPIB-488

IBRSC

Note ibrsc() is deprecated. Use ibconfig() with the IbcSC option instead.

Request/Release System Control.

Syntax
C (gpib-32.dll) ibrsc (int board, int control)

C (gpib488.dll) ibrsc (int board, int control)

Parameters
board is an integer containing the board handle.

control indicates whether the GPIB Interface Board is to become the system controller or
to relinquish system control capability. If control is non-zero, the specified board becomes
the system controller on the GPIB. If control is 0, the board is not the system controller.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. If no error occurs, Iberr equals 1 if
the specified interface board was previously the system controller or 0 if it was not.

Usage Notes
There may only be one system controller in a GPIB system.

Example
This example makes GPIB board 1 the system controller.

C int gpib1;

gpib1 = ibfind ("gpib1");

ibrsc (gpib1, 1);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-45 Programming Reference Manual

IBRSP
Serial polls a device.

Syntax
C (gpib-32.dll) ibrsp (int device, char *serialpollbyte)

C (gpib488.dll) ibrsp (int device, char *serialpollbyte)

Parameters
device is an integer containing the device handle.

serialpollbyte will contain the serial poll response byte of the device. The serial poll
response byte is device-specific with the exception of bit 6. If bit 6 (hex 40) is set, then the
device is requesting service. Consult the device's documentation for more information.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
If the automatic serial polling feature is enabled, the specified device may have been
automatically polled previously. If it has been polled and a positive response was obtained,
the RQS bit of Ibsta is set on that device. In this case ibrsp returns the previously acquired
status byte. If the RQS bit of Ibsta is not set during an automatic poll, it serial polls the
device. This routine is used to serial poll one device, and obtain its status byte or to obtain a
previously stored status byte. If bit 6 (the hex 40 bit) of the response is set, the device is
requesting service.

When a serial poll occurs, the following sequence of events happens. The board sends an UNL
(unlisten) command. It then addresses itself as a listener and sends a SPE (Serial Poll Enable)
Byte. It then addresses a device as a talker. The board then reads the serial poll response byte
from the device. The board then sends a serial poll disable (SPD) and untalks and unlistens
all devices.

Example
Returns the serial response byte (into serialpollbyte) of a device at PAD 1.

C int dev1;

char serialpollbyte;

dev1 = ibdev (0,1,0,13,1,0);

ibrsp (dev1, &serialpollbyte);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-46 GPIB-488

IBRSV

Note ibrsv() is deprecated. Use ibconfig() with the IbcRsv option instead.

Changes the serial poll response byte.

Syntax
C (gpib-32.dll) ibrsv (int board, int statusbyte)

C (gpib488.dll) ibrsv (int board, int statusbyte)

Parameters
board is an integer containing the board handle.

statusbyte represents the serial poll response byte of the GPIB Interface Board. The serial
poll response byte is system-specific, with the exception of bit 6 (hex 40). If bit 6 (hex 40) is
set, then the SRQ line is asserted to indicate to the Controller-In-Charge that the board is
requesting service.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. If no error occurs, Iberr will contain
the previous value of statusbyte.

Usage Notes
This routine is used when the specified GPIB Interface Board is not the Controller-In-Charge.
It can be used to request service (set bit 6 of the serial response byte) from the
Controller-In-Charge or to change the value of GPIB Interface Board's serial poll response
byte.

Example
This example sets the GPIB Interface Board 1 serial poll status byte to 41 hex (assert SRQ)
which indicates that the board requires service.

C int gpib1;

gpib1 = ibfind ("gpib1");

ibrsv (gpib1, 0x41);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-47 Programming Reference Manual

IBSAD

Note ibsad() is deprecated. Use ibconfig() with the IbcSAD option instead.

Assigns/unassigns a secondary address to a board or device.

Syntax
C (gpib-32.dll) ibsad (int boarddev, int address)

C (gpib488.dll) ibsad (int boarddev, int address)

Parameters
boarddev is an integer containing device or board handle.

address represents the secondary address. If address = 0 or address = 7F hex, secondary
addressing is disabled. If address is a legal secondary address (60 to 7E hex), the new
secondary address is temporarily assigned to the board/device. The new secondary address is
used until it is either redefined by calling ibsad again, the device/board is re-initialized by
calling ibfind or ibonl, or the program is restarted.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurs. Contains the previously assigned
secondary address if no error occurs.

Usage Notes
See also ibconfig (IbcPAD).

Example
This example assigns the secondary address 7 (MSA7, hex 67) to a device at PAD 5.

C int dev5;

dev5 = ibdev (0,5,0,13,1,0);

ibsad (dev5, 0x67);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-48 GPIB-488

IBSIC
Asserts IFC (Interface Clear) signal. This re-initializes the GPIB system.

Syntax
C (gpib-32.dll) ibsic (int board)

C (gpib488.dll) ibsic (int board)

Parameters
board is an integer containing the board handle.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. The ESAC error is generated if the
specified GPIB Interface Board is not the system controller.

Usage Notes
This routine can only be used if the specified GPIB board is the system controller. When the
routine is executed, the GPIB interface board asserts the IFC (Interface Clear) signal for at
least 100 µsec. This action results in the system controller regaining control of the GPIB (for
example, becoming the Controller-In-Charge). When IFC line is asserted, all GPIB interface
functions of the bus devices are reset.

Example
This example resets the GPIB bus associated with the specified GPIB Interface Board and
makes that board Controller-In-Charge.

C int gpib1;

gpib1 = ibfind("GPIB1");

ibsic (gpib1);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-49 Programming Reference Manual

IBSRE

Note ibsre() is deprecated. Use ibconfig() with the IbcSRE option instead.

Asserts/Unasserts the REN (Remote Enable) line.

Syntax
C (gpib-32.dll) ibsre (int board, int ren)

C (gpib488.dll) ibsre (int board, int ren)

Parameters
board is an integer containing the board handle.

ren specifies whether the REN line is to be asserted or unasserted. If ren is zero, the REN line
is unasserted. Otherwise, the REN line is asserted.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. The ESAC error is generated if the
specified GPIB interface board is not the system controller. Contains the previous REN state
if no error occurs.

Usage Notes
This routine can only be used if the specified GPIB interface board is the system controller.

Even though the REN line is asserted, the device(s) is not put into remote state until is
addressed to listen by the Active Controller. When the REN line is unasserted, all devices
return to local control.

Example
This example puts the device at MLA 12 (2C hex, ASCII,) and associated with GPIB Interface
Board 1 in remote mode.

C int gpib1:

gpib1 = ibfind ("GPIB1");

ibsre (gpib1, 2); /* Use any non-zero

value */

ibsic (gpib1);

ibcmd (gpib1,",", 1);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-50 GPIB-488

IBSTOP

Note Asynchronous I/O is not explicitly supported and is treated as synchronous.

Terminate an asynchronous operation.

Syntax
C (gpib-32.dll) ibstop (int boarddev)

C (gpib488.dll) ibstop (int boarddev)

Parameters
boarddev is an integer containing the device or board handle.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA. If an operation
is terminated, the ERR bit is set.

Iberr will contain an error code, if an error occurred. If an operation is terminated, an EABO
error is returned.

Example
This example starts a background write command and then immediately stops it.

C int dev;

dev = ibdev (0,2,0,13,1,0);

ibwrta(dev, "datafile");

ibstop (dev);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-51 Programming Reference Manual

IBTMO

Note ibtmo() is deprecated. Use ibconfig() with the IbcTMO option instead.

Changes timeout value.

Syntax
C (gpib-32.dll) int ibtmo (int boarddev, int timeout)

C (gpib488.dll) int ibtmo (int boarddev, int timeout)

Parameters
boarddev is an integer containing the board or device handle.

timeout specifies the timeout. The timeout value determines how long I/O routines wait for
a response from a device. When the timeout period expires during an I/O operation, the I/O
function returns an EABO error. Valid timeout codes are shown in Table 3-6.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. Contains the previous timeout code if
no error occurs.

Table 3-6. Timeout Codes

Code Value
Minimum

timeout Code Value
Minimum

timeout

TNONE 0 Disabled T100ms 9 100 msec

T10us 1 10 msec T300ms 10 300 msec

T30us 2 30 msec T1s 11 1 sec

T100us 3 100 msec T3s 12 3 sec

T300us 4 300 msec T10s 13 10 sec

T1ms 5 1 msec T30s 14 30 sec

T3ms 6 3msec T100s 15 100 sec

T10ms 7 10msec T300s 16 300 sec

T30ms 8 30 msec T1000s 17 1000 sec

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-52 GPIB-488

Usage Notes
This routine is used to temporarily change the default timeout value assigned to the
device/GPIB Interface board.

The new timeout is used until it is redefined (by calling ibtmo again) the device/board is
re-initialized (by calling ibfind or ibonl); or the system is restarted.

Example
This example changes the timeout (to 30 µs) for all calls specifying the “plotter” device at
PAD 3.

C int plotter;

plotter = ibdev (0,3,0,13,1,0);

ibtmo(plotter, T30us);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-53 Programming Reference Manual

IBTRG
Triggers the specified device.

Syntax
C (gpib-32.dll) ibtrg (int device)

C (gpib488.dll) ibtrg (int device)

Parameters
device is an integer containing device handle.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this routine is executed, the GPIB Interface Board associated with the device is
addressed to talk and all devices are unlistened. The specified device is then addressed to
listen and a GET (Group Execute Trigger) command is sent.

Example
This example triggers the specified device.

C int plotter;

plotter = ibdev (0,6,0,13,1,0);

ibtrg (plotter);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-54 GPIB-488

IBWAIT
Forces application program to wait for a specified event(s) to occur.

Syntax
C (gpib-32.dll) ibwait (int boarddev, int mask)

C (gpib488.dll) ibwait (int boarddev, int mask)

Parameters
boarddev is an integer containing the board or device handle.

mask specifies the events that ibwait will wait for. Each bit in mask represents a different
event. These bits are the same as the bits in Ibsta positions.

Bits 9, 10, and 15 are unused.

For more information regarding Ibsta, see Appendix B, IBSTA.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
Because the mnemonic for each bit of Ibsta is defined as a constant within the header file,
you can elect to use the mnemonic rather than the hex value. If TIMO is set, ibwait returns
if the event does not occur within the timeout period of the device.

If a GPIB interface board is specified, the RQS bit is not applicable.

Bit 15 14 13 12 11 10 9 8

Event — TIMO END SRQI RQS — — CMPL

Bit 7 6 5 4 3 2 1 0

Event LOK REM CIC ATN TACS LACS DTAS DCAS

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-55 Programming Reference Manual

Example
This example forces your program to wait indefinitely for the specified device to request
service.

C int plotter;

plotter = ibdev (0,1,0,13,1,0);

ibwait (plotter, RQS);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-56 GPIB-488

IBWRT
Writes data from a string to the specified device or GPIB Interface Board.

Syntax
C (gpib-32.dll) ibwrt (int boarddev, char buf[], long bytecount)

C (gpib488.dll) ibwrt (int boarddev, const char * buf, size_t

bytecount)

Parameters
boarddev is an integer containing the board or device handle.

buf is the string containing the data to be written. buf can contain up to 2 GB (231-1 bytes).
String size may be limited by the language you are using. Check documentation for your
language.

bytecount specifies the number of bytes to be written from the string.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code of the first error detected, if an error occurred. An EADR
results if boarddev specifies a board and the board has not already been addressed to talk.

Ibcnt, ibcntl will contain the number of bytes that were written. ibcnt is a 16-bit integer.
Ibcnt and ibcntl are 32-bit integers. If the requested count was greater than 64 K, use
Ibcnt or ibcntl instead of ibcnt.

Usage Notes
This routine is used to send device-specific commands. A write terminates when one of the
following occurs:

• All bytes are transferred.

• An error is detected.

• The time limit is exceeded.

• A DCL (Device Clear) or SDC (Selected DC) is received from the CIC.

• All data is sent.

If boarddev specifies a device, the specified device is addressed to listen and its associated
access board is addressed to talk. If boarddev specifies a GPIB Interface Board, the
Controller-In-Charge must have already addressed a device as a listener and the board as a

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-57 Programming Reference Manual

talker. If the board is the Active Controller, it unasserts ATN in order to send data. This routine
leaves the board in that state.

If you want to send an EOS character at the end of the data string, you must include it in the
string.

Example
This example sends five bytes terminated by a carriage return and line feed to the specified
device.

C int ptr;

ptr = ibdev (0,7,0,13,1,0);

ibwrt (ptr,"IP2X5\r\n", 7);

Chapter 3 GPIB 488.1 Library Reference

Programming Reference Manual 3-58 GPIB-488

IBWRTA

Note Asynchronous I/O is not explicitly supported and will be treated as synchronous.

Writes data asynchronously from a string to the specified device or GPIB interface board.

Syntax
C (gpib-32.dll) ibwrta (int boarddev, char buf[], long bytecount)

C (gpib488.dll) ibwrta (int boarddev, const char * buf, size_t

bytecount)

Parameters
boarddev is an integer containing the board or device handle.

buf is the storage buffer for the data. Up to 2 GB (231-1 bytes) can be stored. String size may
be limited by the language you are using. Check documentation for your language.

bytecount specifies the number of bytes to be written.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code of the first error detected, if an error occurred. An EADR
results if boarddev specifies a board and the board has not already been addressed to talk.

Ibcnt, ibcntl will contain the number of bytes that were written. ibcnt is a 16-bit integer.
Ibcnt and ibcntl are 32-bit integers. If the requested count was greater than 64 K, use
Ibcnt or ibcntl instead of ibcnt.

Example
In this example, ibwrt sends a command (“UPLOAD”) to a device. The device expects a block
of data to be sent immediately. ibwrta begins a transfer of 5000 bytes in the background and
program continues on into the WHILE loop. The WHILE loop calls ibwait with MASK set
to 0 to update Ibsta. The WHILE loop checks Ibsta to see if ibwrta has completed or any
error have occurred. The program may do anything else within the WHILE loop except make
other GPIB I/O calls.

C char writebuffer[5000];

ibwrt (device, "UPLOAD");

ibwrta (device, writebuffer, 5000);

while ((Ibsta() & (CMPL+ERR)) == 0)

ibwait (device, 0);

Chapter 3 GPIB 488.1 Library Reference

GPIB-488 3-59 Programming Reference Manual

IBWRTF
Writes data from a file to the specified device or GPIB Interface Board.

Syntax
C (gpib-32.dll) ibwrtf (int boarddev, char filename [])

C (gpib488.dll) ibwrtf (int boarddev, const char * filename)

Parameters
boarddev is an integer containing the board or device handle.

filename is the name of the file (up to 260 characters, including drive/path) to store the data.
Specify a drive and path if necessary. This file is automatically opened as a binary file.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. An EFSO error is generated if the file
can not be found.

Ibcnt, ibcntl will contain the number of bytes that were written. ibcnt is a 16-bit integer.
Ibcnt and ibcntl are 32-bit integers. If the requested count was greater than 64 K, use
Ibcnt or ibcntl instead of ibcnt.

Usage Notes
A write terminates when one of the following occurs:

• An error is detected.

• The time limit is exceeded.

• A DCL or SDC is received from the Active Controller.

• All data has been sent.

If boarddev specifies a device, the specified device is addressed to talk and its associated
access board is addressed to listen. If boarddev specifies a GPIB interface board, you must
have already addressed a device as a listener and the board as a talker. If the board is the CIC,
it unasserts ATN in order to receive data. This routine leaves the board in that state.

Example
This program sends the command “UPLOAD” to a device and prepares the device to receive a
large amount of data. The program then sends the data from a file to the device.

C ibwrt (device, "UPLOAD");

ibwrtf (device, "c:\\gpib.dat");

GPIB-488 4-1 Programming Reference Manual

4
GPIB 488.2 Library Reference

This chapter describes each of the 488.2 GPIB library routines. A short
description of the routine, its syntax, parameters, any values that are
returned, any special usage notes, and an example are included for each
routine. The routines are listed in alphabetical order. The following table
lists all of the 488.2 GPIB library routines. A full description of each
routine follows the table.

Note 488.2 addresses contain two bytes packed into a word – the low byte is the primary
address and the high byte is the secondary address. If secondary addressing is not used, the
high byte should be zero.

488.2 routines use a board index as the first argument (typically zero) – not a handle.

Table 4-1. 488.2 Address word

HIGH BYTE LOW BYTE

Secondary Address (0 or 96-126) Primary Address (0-30)

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-2 GPIB-488

AllSpoll
Performs a serial poll on specified devices.

Syntax
C (gpib-32.dll) AllSpoll (int board, short addresslist[],

short resultlist[])

C (gpib488.dll) AllSpoll (int board, const short * addresslist,

short * resultlist)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices to be serial polled.

resultlist is an array which contains the results of the serial poll. Once a device has been
serial polled, the results of the serial poll are stored in the corresponding element of
resultlist.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. If a device times out, Iberr contains
Error 6 – EABO (see Appendix C, IBERR), and Ibcnt contains the index of the timed-out
device.

Usage Notes
To poll only one GPIB device, use ReadStatusByte.

Example
This example serial polls two devices (GPIB address 6 and 7) connected to GPIB board 0.

C short addresslist[3] = {6,7,NOADDR};

short resultlist[2];

AllSpoll (0, addresslist, resultlist);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-3 Programming Reference Manual

DevClear
Clears one device.

Syntax
C (gpib-32.dll) DevClear (int board, short address)

C (gpib488.dll) DevClear (int board, short address)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

address is the GPIB address of the device to clear.

Returns

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This routine sends the GPIB Selected Device Clear (SDC) message to the specified device.

To clear multiple devices, use the DevClearList routine.

If address is set to NOADDR, then all connected devices on the GPIB is cleared through the
Universal Device Clear (UDC) message.

Example
This example clears the device at GPIB primary address 4, secondary address 30 connected
to GPIB board 0.

C DevClear(0, MakeAddr (4,30));

/* Use MakeAddr macro (in GPIB.H) to pack

primary and secondary address */

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-4 GPIB-488

DevClearList
Clears specified devices.

Syntax
C (gpib-32.dll) DevClearList (int board, short addresslist[])

C (gpib488.dll) DevClearList (int board, const short * addresslist)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices to be cleared.

Returns

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This routine sends the GPIB Selected Device Clear (SDC) to the devices specified by
addresslist.

To clear only one device, use DevClear.

Example
This clears the devices at GPIB addresses 6 and 7, connected to GPIB board 0.

C short addresslist[3] = {6,7,NOADDR};

DevClearList(0, addresslist);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-5 Programming Reference Manual

EnableLocal
Places specified devices in local mode (Can be “programmed” from front panel controls.).

Syntax
C (gpib-32.dll) EnableLocal (int board, short addresslist[])

C (gpib488.dll) EnableLocal (int board, const short * addresslist)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices to enable locally.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this routine is executed, the Controller addresses the specified GPIB devices as
listeners and then sends the GPIB Go To Local (GTL) command.

To put all devices in local mode, use an array containing only the NOADDR value. This
unasserts the GPIB Remote Enable (REN) line, thereby placing all GPIB devices in local
mode.

Example
Put the GPIB devices at addresses 6 and 7 (connected to board 0) in local mode.

C short addresslist[3] = {6,7,NOADDR};

EnableLocal(0, addresslist);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-6 GPIB-488

EnableRemote
Allow remote programming (by sending messages over the GPIB line) of a device.

Syntax
C (gpib-32.dll) EnableRemote (int board, short addresslist[])

C (gpib488.dll) EnableRemote (int board, const short * addresslist)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices to be put in remote programming mode.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this routine is executed, the system controller asserts the Remote Enable (REN) line
and the Controller addresses the specified devices as listeners.

Example
Places devices at GPIB addresses 6 and 7 (connected to GPIB board) in remote mode.

C short addresslist[3] = {6,7,NOADDR};

EnableRemote(0, addresslist);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-7 Programming Reference Manual

FindLstn
Finds all listeners on the GPIB.

Syntax
C (gpib-32.dll) FindLstn (int board, short addresslist[], short

resultlist[], int limit)

C (gpib488.dll) FindLstn (int board, const short * addresslist,

short * resultlist, size_t limit)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR.

resultlist will contain the addresses of all detected listeners. This array must be large
enough to hold all possible addresses.

limit is an integer which specifies how many address entries can be placed into the
resultlist array. Set to the size of the resultlist array.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. An ETAB (20) error indicates that more
listeners are present on the GPIB bus than limit will allow to be placed in resultlist. In
this case, Ibcnt contains the number of addresses actually placed in resultlist.

Usage Notes
The addresses specified by addresslist are tested to see if a listening device is present. If
a listener is found at a primary address, its address is placed in resultlist. If no listeners
are detected at a primary address, then all secondary addresses associated with that primary
address are tested. If any listeners are detected, their addresses are placed in resultlist.
You can use this routine to determine how many devices on the network are capable of
listening. Once these devices are detected, they can be identified by their response to
identification request messages.

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-8 GPIB-488

Example
This example verifies if listening devices are present at GPIB primary addresses 6 and 7 on
Board 0.

C short addresslist[3] = {6,7,NOADDR};

short resultlist[4];

FindLstn(0, addresslist, resultlist, 4);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-9 Programming Reference Manual

FindRQS
Identify the device requesting service.

Syntax
C (gpib-32.dll) FindRQS (int board, short addresslist[], short

*result)

C (gpib488.dll) FindRQS (int board, const short * addresslist,

short *result)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. The devices
located at these addresses are serial polled until the one asserting SRQ is located.

Returns
result will contain the returned status byte of the device asserting SRQ.

Ibcnt will contain the index (in addresslist) identifying the device's address.

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred. Iberr contains the error code ETAB,
if no device is requesting service. In this case, Ibcnt contains NOADDR's index.

Iberr will contain the error code EABO if a device times out while responding to its serial
poll. In this case, Ibcnt contains the index of the timed-out device.

Usage Notes
None.

Example
Identifies which of the devices at GPIB addresses 6 and 7 (connected to board 0) is requesting
service.

C short addresslist[3] = {6,7,NOADDR};

short result;

FindRQS (0, addresslist, &result);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-10 GPIB-488

PassControl
Makes another device the Active Controller.

Syntax
C (gpib-32.dll) PassControl (int board, short address)

C (gpib488.dll) PassControl (int board, short address)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

address is an integer representing the GPIB address of the device that is to become the
controller. The low byte of the integer contains the device's primary GPIB address. The high
byte of the address contains the device's secondary GPIB address. If the device has no
secondary address, the high byte of address is 0.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this routine is executed, the GPIB Take Control (TCT) command is issued. This
forces the Active Controller to pass control to the device at the specified address. This device
must have Controller capability.

Example
This example would make the device connected to Board 0 and whose GPIB address is 6 the
Active Controller.

C PassControl(0, 6);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-11 Programming Reference Manual

PPoll
Performs a parallel poll.

Syntax
C (gpib-32.dll) PPoll (int board, short *result)

C (gpib488.dll) PPoll (int board, short *result)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

Returns
result will contain the eight-bit result of the parallel poll. Each bit of the poll result contains
one bit of status information from each device which has been configured for parallel polls.
The value of each bit is dependent on the latest parallel poll configuration sent to the devices
through PPollConfig and the individual status of the devices.

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage notes
None.

Example
Parallel polls devices connected to board 0.

C short result;

PPoll(0, &result);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-12 GPIB-488

PPollConfig
Configures a device for parallel polls.

Syntax
C (gpib-32.dll) PPollConfig (int board, short address, int

dataline, int sense)

C (gpib488.dll) PPollConfig (int board, short address, int

dataline, int sense)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

address is the address of the GPIB device to be configured for a parallel poll.

dataline specifies which data line (1-8) the device uses to respond to a parallel poll.

sense can be 1 or 0, specifying the condition under which the data line is to be
asserted/unasserted. The device compares this value to its Individual Status Bit (IST) and then
responds accordingly. For example, if sense = 0 and the device asserts the specified data line
if its IST bit = 0 and unassert the data line if its IST bit = 1.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage notes
Remember that if a device is locally configured for a parallel poll, the Controller's parallel poll
configuration instruction is ignored.

Example
Configures the device connected to board 0 at address 6 to respond to parallel polls on line 7
when the data line is asserted. The device asserts line 7 if its IST bit = 1, and unasserts line 7
if IST = 0.

C PPollConfig(0, 6, 7, 1);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-13 Programming Reference Manual

PPollUnconfig
Unconfigures devices for parallel polls.

Syntax
C (gpib-32.dll) PPollUnconfig (int board, short addresslist[])

C (gpib488.dll) PPollUnconfig (int board, const short *

addresslist)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices that do not respond to a parallel poll.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Example
Unconfigure the devices connected to board 0 and located at GPIB addresses 6 and 7.

C short addresslist[3] = {6, 7, NOADDR};

PPollUnconfig(0, addresslist);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-14 GPIB-488

RcvRespMsg
Reads data from a previously addressed device.

Syntax
C (gpib-32.dll) RcvRespMsg (int board, char data[], long count,

int termination)

C (gpib488.dll) RcvRespMsg (int board, const char * data, size_t

count, int termination)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

data is the string that receives the data.

count specifies the maximum number of data bytes which are to be read.

termination is the flag used to signal the end of data. If termination equals a value
between 0 and 00FF hex, the corresponding ASCII character is the termination character. The
read is stopped when this character is detected. If termination = STOPend (A constant
defined in the header file), then the read is stopped when EOI is detected.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
You must address the appropriate devices as Listeners/Talkers prior to calling this routine.
The input data string is not terminated with a zero byte.

Example
A previously addressed Listener receives 50 bytes of data from a previously addressed Talker.
The transmission is terminated when EOI is detected.

C char data[50];

RcvRespMsg(0, data, 50, STOPend);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-15 Programming Reference Manual

ReadStatusByte
Serial poll a single device and read its status byte.

Syntax
C (gpib-32.dll) ReadStatusByte (int board, short address, short

*result)

C (gpib488.dll) ReadStatusByte (int board, short address, short

*result)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

address is an integer representing the GPIB address of the device that is to be serial polled.

Returns
result will contain the status byte. The high byte of result is always 0.

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
None.

Example
This example serial polls the device at address 2 and retrieves its status byte.

C short result;

ReadStatusByte (0, 2, &result);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-16 GPIB-488

Receive
Reads data from a GPIB device.

Syntax
C (gpib-32.dll) Receive (int board, short address,char data[],

long count, int termination)

C (gpib488.dll) Receive (int board, short address, char * data,

size_t count, int termination)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

address is an integer representing the GPIB address of the device that is to be read from.

count specifies the maximum number of data bytes which are to be read.

termination is the flag used to signal the end of data. If termination equals a value
between 0 and 00FF hex, the corresponding ASCII character is the termination character. The
read is stopped when this character is detected. If termination = STOPend (constant
defined in the header file), then the read is stopped when EOI is detected.

Returns
data is the string that receives the data.

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
The input data string is not terminated with a zero byte.

Example
Receive 50 bytes of data from the specified talker (device at address 2, connected to board).
EOI signals the end of the message.

C char data[50];

Receive (0, 2, data, 50, STOPend);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-17 Programming Reference Manual

ReceiveSetup
Address a GPIB Interface Board as a Listener and a GPIB device as a Talker, in preparation
for data transmission.

Syntax
C (gpib-32.dll) ReceiveSetup (int board, short address)

C (gpib488.dll) ReceiveSetup (int board, short address)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

address is an integer representing the GPIB address of the device to send the data.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
In order to actually transfer any data, you must call a routine such as RcvRespMsg following
this routine.

This routine is useful in instances where you need to transfer multiple blocks of data between
devices. For example, you could initially address the devices using ReceiveSetup, then
make multiple calls of RcvRespMsg to transfer the data.

For typical cases, Receive is simpler to use, since it takes care of both the setup and the data
transfer.

Example
This example instructs a GPIB device at address 5 to send data to GPIB Board 0. Up to 50
bytes of data is received and then stored in a string. The message is terminated with an EOI.

C char message[50];

ReceiveSetup(0, 5);

RcvRespMsg (0, message, 50, STOPend);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-18 GPIB-488

ResetSys
Initializes GPIB System.

Syntax
C (gpib-32.dll) ResetSys (int board, short addresslist[])

C (gpib488.dll) ResetSys (int board, const short * addresslist)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices on the system to be reset.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This routine initializes the GPIB bus and all specified devices. First, the system controller
asserts the REN (Remote Enable) line and then the IFC (Interface Clear) line. This action
unlistens and untalks all of the attached GPIB devices and causes the system controller to
become the Controller-In-Charge (CIC).

The Device Clear (DCL) message is then sent to all of the connected devices. This forces the
devices to return to their default states and ensures that they can receive the Reset (RST)
message. A reset message (RST) is then sent to all of the devices specified by addresslist.
This resets the devices to specific parameters.

Example
This example resets the GPIB devices connected to GPIB board 0 and assigned GPIB bus
addresses of 6 and 7.

C short addresslist[3] = {6, 7, NOADDR};

ResetSys(0, addresslist);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-19 Programming Reference Manual

Send
Sends data to one GPIB device.

Syntax
C (gpib-32.dll) Send (int board, short address,char data[],

long count, int eotmode)

C (gpib488.dll) Send (int board, short address, const char * data,

size_t count, int eotmode)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

address is an integer representing the GPIB address of the device to receive the data.

data is the string of data which is sent to the device.

count specifies the maximum number of data bytes which are to be sent to the device.

eotmode is the flag used to signal the end of data.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this routine is executed, the specified GPIB board is addressed as a Talker, the
designated GPIB device is addressed as a Listener and the number of bytes (specified by
count) in data is sent. Values for eotmode are:

• NLend—Send NL (Line Feed) with EOI after last data byte.

• DABend—Send EOI with the last data byte in the string.

• NULLend—Do not mark the end of the transfer.

These constants are defined in the header file.

Example
In this example, GPIB board 0 sends an identification query to the GPIB device at address 3.
End of data is signalled by an EOI.

C Send (0, 3, "*IDN?", 5, DABend);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-20 GPIB-488

SendCmds
Send GPIB commands.

Syntax
C (gpib-32.dll) SendCmds (int board, char commands[],

long count)

C (gpib488.dll) SendCmds (int board, const char * commands, size_t

count)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

commands is a string containing the GPIB command bytes to be sent.

count specifies the maximum number of command bytes which are to be sent.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This routine is useful in situations where specialized GPIB command sequences are called for.

Example
The GPIB board (at 0) simultaneously triggers the GPIB devices at addresses 8 and 9 and
quickly puts them in local mode.

C SendCmds (0, "\x3F\x40\x28\x29\x04\x01",6);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-21 Programming Reference Manual

SendDataBytes
Sends data to previously addressed devices.

Syntax
C (gpib-32.dll) SendDataBytes (int board, char data[], long

count, int eotmode)

C (gpib488.dll) SendDataBytes (int board, const char * data,

size_t count, int eotmode)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

data is the string that contains the data which is sent to the device.

count specifies the maximum number of data bytes which are to be sent to the device.

eotmode is the flag used to signal the end of data.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This routine assumes that the desired GPIB listeners have already been addressed (by using
SendSetup, for example).

Values for eotmode are as follows:

• NLend—Send NL (Line Feed) with EOI after last data byte.

• DABend—Send EOI with the last data byte in the string.

• NULLend—Do not mark the end of the transfer.

These constants are defined in the header files.

Example
In this example, GPIB board 0 sends an identification query to all previously addressed
listeners. End of data is signaled by an EOI.

C SendDataBytes (0, "*IDN?", 5, DABend);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-22 GPIB-488

SendIFC
Clears the GPIB bus by asserting the IFC (Interface Clear) line.

Syntax
C (gpib-32.dll) SendIFC (int board)

C (gpib488.dll) SendIFC (int board)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This routine is used as part of the GPIB initialization procedure. When the system controller
asserts the IFC line, it unlistens and untalks all GPIB devices, forcing them to an idle state.
The system controller also becomes the Controller-In-Charge (CIC).

Example
Clears the GPIB bus from Board 0.

C SendIFC(0);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-23 Programming Reference Manual

SendList
Sends data to multiple GPIB devices.

Syntax
C (gpib-32.dll) SendList (int board, short addresslist[],

char data[], long count, int eotmode)

C (gpib488.dll) SendList (int board, const short * addresslist,

const char * data, size_t count, int eotmode)

Parameters
board is an integer which identifies the GPIB board to use for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices on the system to reset.

data is the string containing the data to send.

count specifies the maximum number of data bytes to send to the device.

eotmode is the flag used to signal the end of data.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this routine is executed, the specified GPIB board is addressed as a Talker and the
designated GPIB devices as Listeners. The board then sends the given number of bytes of data
from the data string to the listening GPIB devices.

• NLend—Send NL (Line Feed) with EOI after last data byte.

• DABend—Send EOI with the last data byte in the string.

• NULLend—Do not mark the end of the transfer.

These constants are defined in the header files.

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-24 GPIB-488

Example
In this example, GPIB board 0 sends an identification query to the GPIB devices at addresses
6 and 7. End of data is signalled by an EOI.

C short addresslist[3] = {6, 7, NOADDR};

SendList (0, addresslist, "*IDN?", 5, DABend);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-25 Programming Reference Manual

SendLLO
Sends Local Lockout (LLO) message to all GPIB devices.

Syntax
C (gpib-32.dll) SendLLO (int board)

C (gpib488.dll) SendLLO (int board)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this routine is executed, the specified GPIB board sends the GPIB Local Lockout
(LLO) message to all devices. This means that once they have been addressed as listeners, the
devices respond only to messages sent over the GPIB by the Controller. (In other words, they
can not be locally programmed from front panel controls.) Only the Controller can return
them to a local programming state.

Example
In this example, GPIB board 0 sends a Local Lockout to its connected GPIB devices.

C SendLLO (0);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-26 GPIB-488

SendSetup
Addresses a GPIB board as a Talker and the specified GPIB devices as Listeners.

Syntax
C (gpib-32.dll) SendSetup (int board, short addresslist[])

C (gpib488.dll) SendSetup (int board, const short * addresslist)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices to address as Listeners.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
Following this routine, you should call a routine such as SendDataBytes to actually transfer
the data.

Example
This example prepares GPIB board 0 to send data to GPIB devices 6 and 7.

C short addresslist[3] = {6, 7, NOADDR};

SendSetup(0, addresslist);

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-27 Programming Reference Manual

SetRWLS
Puts all devices in Remote state with Local Lockout and addresses specified devices as
Listeners.

Syntax
C (gpib-32.dll) SetRWLS (int board, short addresslist[])

C (gpib488.dll) SetRWLS (int board, const short * addresslist)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices to be put in remote mode.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This routine puts the specified devices in remote mode with local lockout. The system
controller asserts the REN (Remote Enable) line and addresses the specified devices as
listeners. These devices can then be programmed by messages sent over the GPIB bus. (In
other words, they can not be locally programmed from front panel controls.)

Example
This example puts all devices controlled by GPIB board 0 into Remote mode. Devices 6 and
7 are then addressed as Listeners by the Controller.

C short addresslist[3] = {6, 7, NOADDR};

SetRWLS(0, addresslist);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-28 GPIB-488

TestSRQ
Evaluate state of SRQ line.

Syntax
C (gpib-32.dll) TestSRQ (int board, short *result)

C (gpib488.dll) TestSRQ (int board, short *result)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

Returns
result is equal to 1 if the GPIB SRQ line is asserted. result = 0 if the GPIB SRQ line is
unasserted.

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
TestSRQ will not alter the state of the SRQ line.

Example
This example tests to see if SRQ is asserted.

C Short result;

TestSRQ (0, &result);

if (result == 1)

{ /* SRQ is asserted */}

else

{ /* No SRQ at this time */}

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-29 Programming Reference Manual

TestSys
Activate self-test procedures of specified devices.

Syntax
C (gpib-32.dll) TestSys (int board, short addresslist [],

short resultlist[])

C (gpib488.dll) TestSys (int board, const short * addresslist,

short * resultlist)

Parameters
board is an integer which identifies the GPIB board to use for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices to perform self-tests.

Returns
resultlist is an array which contains the results of each device's self-test procedure.
According to the IEEE-488.2 standard, a result code of 0 indicates the device passed its test.
Any other value indicates an error.

Ibcnt will contain the number of devices which failed their tests.

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this routine is executed, all of the devices identified within the addresslist array are
concurrently sent a message which directs them to perform their self-test procedures. Each
device returns an integer code indicating the results of its tests. This code is placed into the
corresponding element of the resultlist array.

Example
This example tells the devices at addresses 6 and 7 (from Board 0) to perform their self-test
procedures.

C short addresslist[3] = {6, 7, NOADDR};

short resultlist[2];

TestSys(0, addresslist, resultlist);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-30 GPIB-488

Trigger
Triggers one device.

Syntax
C (gpib-32.dll) Trigger (int board, short address)

C (gpib488.dll) Trigger (int board, short address)

Parameters
board is an integer which identifies the GPIB board to used for this operation. In most
applications, this value is 0.

address is an integer representing the GPIB address of the device to trigger. If
address = NOADDR then all Listeners already addressed are triggered.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
When this call is executed, the GPIB GET (Group Execute Trigger) message is sent to the
specified device.

To trigger several GPIB devices, use TriggerList.

Example
This example triggers a device connected to board 0 whose primary GPIB address is 6 and
secondary address is 12.

C Trigger (0, MakeAddr (6, 12));

/* Use MakeAddr macro (in GPIB.H) to pack

primary and secondary address */

Chapter 4 GPIB 488.2 Library Reference

GPIB-488 4-31 Programming Reference Manual

TriggerList
Triggers multiple GPIB devices

Syntax
C (gpib-32.dll) TriggerList (int board, short addresslist[])

C (gpib488.dll) TriggerList (int board, const short *

addresslist)

Parameters
board is an integer which identifies the GPIB board to be used for this operation. In most
applications, this value is 0.

addresslist is an array of GPIB addresses, terminated by the value NOADDR. These
addresses identify the devices to be triggered. If this array contains only NOADDR, all
previously addressed listeners are triggered.

Returns
Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
Use Trigger to trigger only one device.

Example
This example triggers two devices simultaneously. The devices are connected to board 0 and
are at GPIB addresses 6 and 7.

C short addresslist[3] = {6, 7, NOADDR};

TriggerList(0, addresslist);

Chapter 4 GPIB 488.2 Library Reference

Programming Reference Manual 4-32 GPIB-488

WaitSRQ
Wait until a device asserts SRQ.

Syntax
C (gpib-32.dll) WaitSRQ (int board, short *result)

C (gpib488.dll) WaitSRQ (int board, short *result)

Parameters
board is an integer which identifies the GPIB board to use for this operation. In most
applications, this value is 0.

Returns
result indicates whether or not an SRQ occurred. If an SRQ occurs before the timeout
expires, result = 1. Otherwise, result = 0.

Ibsta will contain a 16-bit status word as described in Appendix B, IBSTA.

Iberr will contain an error code, if an error occurred.

Usage Notes
This call suspends operation until a device requests service or a timeout occurs. Follow this
call with a FindRQS call to determine which device needs service.

Example
Wait for a GPIB device to request service and then ascertain if device 6 or 7 requires service.

C short addresslist[3] = {6,7,NOADDR};

short resultlist[2];

short result;

WaitSRQ (0,&result);

if (result == 1)

FindRQS (0, addresslist, resultlist);

GPIB-488 A-1 Programming Reference Manual

A
Multiline Interface Messages

Table A-1. Multiline Interface Messages (Hex 00-3F)

HEX DEC ASCII MSG HEX DEC ASCII MSG

00 0 NUL 20 32 SP MLA0

01 1 SOH GTL 21 33 ! MLA1

02 2 STX 22 34 “ MLA2

03 3 ETX 23 35 # MLA3

04 4 EOT SDC 24 36 $ MLA4

05 5 ENQ PPC 25 37 % MLA5

06 6 ACK 26 38 & MLA6

07 7 BEL 27 39 ‘ MLA7

08 8 BS GET 28 40 (MLA8

09 9 HT TCT 29 41) MLA9

0A 10 LF 2A 42 * MLA10

0B 11 VT 2B 43 + MLA11

0C 12 FF 2C 44 ‘ MLA12

0D 13 CR 2D 45 - MLA13

0E 14 SO 2E 46 > MLA14

0F 15 SI 2F 47 / MLA15

10 16 DLE 30 48 0 MLA16

11 17 DC1 LLO 31 49 1 MLA17

12 18 DC2 32 50 2 MLA18

13 19 DC3 33 51 3 MLA19

14 20 DC4 DCL 34 52 4 MLA20

Appendix A Multiline Interface Messages

Programming Reference Manual A-2 GPIB-488

15 21 NAK PPU 35 53 5 MLA21

16 22 SYN 36 54 6 MLA22

17 23 ETB 37 55 7 MLA23

18 24 CAN SPE 38 56 8 MLA24

19 25 EM SPD39 39 57 9 MLA25

1A 26 SUB 3A 58 : MLA26

1B 27 ESC 3B 59 ; MLA27

1C 28 FS 3C 60 < MLA28

1D 29 GS 3D 61 = MLA29

1E 30 RS 3E 62 > MLA30

1F 31 US 3F 63 ? UNL

Table A-2. Multiline Interface Messages (Hex 40-7F)

HEX DEC ASCII MSG HEX DEC ASCII MSG

40 64 @ MTA0 60 96 ‘ MSA0,P
PE

41 65 A MTA1 61 97 a MSA1,P
PE

42 66 B MTA2 62 98 b MSA2,P
PE

43 67 C MTA3 63 99 c MSA3,P
PE

44 68 D MTA4 64 100 d MSA4,P
PE

45 69 E MTA5 65 101 e MSA5,P
PE

46 70 F MTA6 66 102 f MSA6,P
PE

Table A-1. Multiline Interface Messages (Hex 00-3F) (Continued)

HEX DEC ASCII MSG HEX DEC ASCII MSG

Appendix A Multiline Interface Messages

GPIB-488 A-3 Programming Reference Manual

47 71 G MTA7 67 103 g MSA7,P
PE

48 72 H MTA8 68 104 h MSA8,P
PE

49 73 I MTA9 69 105 i MSA9,P
PE

4A 74 J MTA10 6A 106 j MSA10,
PPE

4B 75 K MTA11 6B 107 k MSA11,
PPE

4C 76 L MTA12 6C 108 l MSA12,
PPE

4D 77 M MTA13 6D 109 m MSA13,
PPE

4E 78 N MTA14 6E 110 n MSA14,
PPE

4F 79 O MTA15 6F 111 o MSA15,
PPE

50 80 P MTA16 70 112 p MSA16,
PPD

51 81 Q MTA17 71 113 q MSA17,
PPD

52 82 R MTA18 72 114 r MSA18,
PPD

53 83 S MTA19 73 115 s MSA19,
PPD

54 84 T MTA20 74 116 t MSA20,
PPD

55 85 U MTA21 75 117 u MSA21,
PPD

56 86 V MTA22 76 118 v MSA22,
PPD

Table A-2. Multiline Interface Messages (Hex 40-7F) (Continued)

HEX DEC ASCII MSG HEX DEC ASCII MSG

Appendix A Multiline Interface Messages

Programming Reference Manual A-4 GPIB-488

57 87 W MTA23 77 119 w MSA23,
PPD

58 88 X MTA24 78 120 x MSA24,
PPD

59 89 Y MTA25 79 121 y MSA25,
PPD

5A 90 Z MTA26 7A 122 z MSA26,
PPD

5B 91 [MTA27 7B 123 { MSA27,
PPD

5C 92 \ MTA28 7C 124 | MSA28,
PPD

5D 93] MTA29 7D 125 } MSA29,
PPD

5E 94 ^ MTA30 7E 126 ~ MSA30

5F 95 _ UNT 7F 127 DEL MSA0

Table A-3. Message definitions (MSG column)

DCL Device Clear MTA My Talk Address SPD Serial Poll Disable

GET Group Execute
Trigger

PPC Parallel Port
Configure

SPE Serial Port Enable

GTL Go To Local PPD Parallel Poll
Disable

TCT Take Control

LLO Local Lockout PPE Parallel Port
Enable

UNL UnListen

MLA My Listen
Address n

PPU Parallel Port
Unconfigure

UNT UnTalk

MSA My Secondary
Address

SDC Selected Device
Clear

Table A-2. Multiline Interface Messages (Hex 40-7F) (Continued)

HEX DEC ASCII MSG HEX DEC ASCII MSG

GPIB-488 B-1 Programming Reference Manual

B
IBSTA

Every GPIB library routine returns a 16-bit status word to the variable
ibsta (gpib-32.dll) or Ibsta() (gpib488.dll). This status word
describes the current condition of the GPIB bus lines and the GPIB
Interface Board. By examining the status word, the programmer may
determine what path the application program is to take.

Note that the mnemonics used to describe each bit of the status word are
defined within the header file for each language.

The status word contains 16-bits. If a bit equals 1 (set), the corresponding
condition is true. Likewise, if a bit equals 0, then the corresponding
condition has not occurred. The status word is of the format shown below.

If your application performs GPIB operations in multiple threads, your
application should examine the thread status function, ThreadIbsta(),
instead of the global Ibsta(). ThreadIbsta() returns the current value
of Ibsta() for a particular thread of execution. Along with
ThreadIbsta(), your multithreaded application should examine
ThreadIberr() and ThreadIbcnt() instead of the global GPIB status
functions.

Bit 15 14 13 12 11 10 9 8

ERR TIMO END SRQI RQS CMPL

Hex
Value

8000 4000 2000 1000 800 100

Bit 7 6 5 4 3 2 1 0

LOK REM CIC ATN TACS LACS DTAS DCAS

Hex
Value

80 40 20 10 8 4 2 1

Appendix B IBSTA

Programming Reference Manual B-2 GPIB-488

Table B-1. Bit Definitions

Bit Description

ERR GPIB Error. If this bit = 1, an error has occurred during the call. An error code
describing the exact error is returned to the Iberr variable. See
Appendix C, IBERR for more information. ERR is cleared following any call
that does not result in an error.

Check for errors after each call. If an undetected error occurs early in your
program, it may not be apparent until later in the program, when it is more
difficult to isolate.

TIMO Timeout Error. If this bit = 1, a time-out has occurred. Some of the conditions
which may result in this are:

A synchronous I/O function exceeds the programmed timeout.

An ibwait has exceeded the time limit value.

This bit is cleared (set to 0) during all other operations.

Different timeout periods may be set for each device. You can set the timeout
values either by using the configuration utility or in your program by using the
ibconfig function with the IbcTMO option.

END (END) END or EOS Detected. If this bit = 1, EOI has been asserted or an EOS byte
has been detected. If the GPIB Interface board has been programmed through
an ibgts to perform shadow handshaking, any other routine can set this bit to
one.

This bit is cleared (set to 0) whenever an I/O operation is initiated.

SRQI SRQ Interrupt Received. If this bit = 1, a device or Controller is requesting
service. This bit is set upon the following conditions:

• The GPIB Interface Board is the Active
Controller.

• The GPIB SRQ line is asserted.

• Automatic serial poll capability is disabled.

This bit is cleared (= 0) upon the following conditions:

• The GPIB Interface Board is no longer the Active
Controller.

• The GPIB SRQ line is unasserted.

Appendix B IBSTA

GPIB-488 B-3 Programming Reference Manual

RQS Device Requesting Service. If this bit = 1, a device is requesting service. RQS
is set in the status word whenever the hex 40 bit is asserted in the serial poll
status byte of the device. The serial poll that obtained the status byte may have
been the result of an ibrsp or the poll may have been automatically performed
if automatic serial polling is enabled. RQS is cleared when an ibrsp reads the
serial poll status byte that caused the RQS. An ibwait on RQS should only be
done on devices that respond to serial polls.

CMPL I/O Completed. When set, this bit indicates that all I/O operations have been
completed. CMPL is cleared while I/O is in progress.

LOK Lockout State. Indicates whether the board is in a lockout state. While LOK is
set, the EnableLocal routine or ibloc function is inoperative for that board.
LOK is set whenever the GPIB board detects the Local Lockout (LLO) message
has been sent either by the GPIB board or another Controller. LOK is cleared
when the Remote Enable (REN) GPIB line becomes unasserted by the system
controller.

REM Remote State. If this bit = 1, the GPIB Interface Board is in the remote state
(that is, the REN line has been asserted and the Board has been addressed as a
listener.). This bit is cleared when one of the following occurs:

• REN is unasserted.

• The GPIB Interface Board has been addressed as a
Listener and receives a GTL (Go to Local)
command.

• ibloc is called while the LOK bit = 0.

CIC Controller-In-Charge. If this bit = 1, it indicates that the GPIB Interface Board
is the Active Controller. This bit is set upon the following conditions:

• If the board is the system controller and ibsic or
SendIFC is executed.

• Control is passed to the GPIB Interface Board.

• This bit is cleared whenever the GPIB board
detects Interface Clear (IFC) from the system
controller, or when the GPIB board passes control
to another device.

ATN Attention. If this bit = 1, ATN is asserted. Likewise, if this bit = 0, the ATN line
is unasserted.

Table B-1. Bit Definitions (Continued)

Bit Description

Appendix B IBSTA

Programming Reference Manual B-4 GPIB-488

TACS Talker. If this bit = 1, the GPIB Interface Board has been addressed as a talker.
This bit is cleared when one of the following occurs:

• The UNT command is sent.

• The GPIB Interface Board is sent its listen
address.

• Another talker is addressed.

• IFC is asserted.

LACS Listener. If this bit = 1, the GPIB Interface Board has been addressed as a
Listener. It can also be set if the GPIB Interface Board shadow handshakes (as
a result of an ibgts). This bit is cleared whenever one of the following occurs:

• The GPIB Interface Board receives an UNL
(Unlisten) command.

• The GPIB Interface Board is addressed as a talker.

• ibgts is called disabling shadow handshaking.

DTAS Device Trigger Status. If this bit = 1, a GET (Group Execute Trigger)
command has been detected. This bit is cleared in the status word on any call
immediately following an ibwait if the DTAS bit is set in the ibwait mask
parameter.

DCAS Device Clear State. If this bit = 1, a DCL (Device Clear) or SDC (Selected
Device Clear) command has been received by the GPIB Interface Board. The
bit is cleared on any call immediately following an ibwait call if the DCAS bit
was set in the ibwait mask parameter, or on any call immediately following a
read or write.

Some of the status word bits can also be cleared under the following
circumstances:

• If ibonl is called, the END, LOK, REM, CIC, TACS,
LACS, DTAS, and DCAS bits are cleared.

• If an ENEB or EDVR error is returned (See
Appendix C, IBERR for more information.), all of
the status word bits except ERR are cleared.

Table B-1. Bit Definitions (Continued)

Bit Description

GPIB-488 C-1 Programming Reference Manual

C
IBERR

If the ERR bit in the status word (ibsta/Ibsta()) has been set (= 1), an
error code describing the exact error is returned to the iberr
(gpib-32.dll) or Iberr() (gpib488.dll) variable. Table C-1 lists the
possible GPIB error codes, the corresponding mnemonic, and a brief
explanation. Note that the mnemonics are defined within the header files
for each language. This allows you to use the mnemonic in place of the
error code value. Detailed explanations of each error and possible solutions
are listed after the table.

If your application performs GPIB operations in multiple threads, your
application should examine the thread status function, ThreadIberr(),
instead of the global GPIB Iberr(). ThreadIberr() returns the current
value of Iberr() for a particular thread of execution. Along with
ThreadIberr(), your multithreaded application should examine
ThreadIbsta() and ThreadIbcnt() instead of the global status
functions.

Table C-1. Error codes

Error Code

DescriptionDecimal Mnemonic

0 EDVR System error

1 ECIC Function requires GPIB board to be CIC

2 ENOL Write function detected no Listeners

3 EADR Interface board not addressed correctly

4 EARG Invalid argument to function call

5 ESAC Function requires GPIB board to be SAC

6 EABO I/O operation aborted

7 ENEB Non-existent interface board

10 EOIP I/O operation started before previous operation completed

Appendix C IBERR

Programming Reference Manual C-2 GPIB-488

11 ECAP No capability for intended operation

12 EFSO File system operation error

14 EBUS Command error during device call

15 ESTB Serial poll status byte lost

16 ESRQ SRQ remains asserted

20 ETAB The return buffer is full.

23 EHDL The input handle is invalid

EDVR—Driver error

Cause: A board or device is not installed or configured properly. This error
is returned when a device or board that is passed to ibfind cannot
be found, or when a board index passed to ibdev cannot be found.
Ibcnt will contain an error code to help further identify the
problem.

Solution: • Call ibdev to open a device without using its symbolic
name.

• Configure each board and device.

• Include the unit descriptor that is returned from ibfind
or ibdev as the first parameter in the function. Verify that
the value of the variable before the failing function is not
corrupted.

ECIC—Specified GPIB interface board is not CIC

Cause: Many routines require that the GPIB interface board is the
Controller-In-Charge. These include: ibcmd, ibln, ibrpp, Send,
Receive, for example, as well as any routines which manipulate the
GPIB ATN, EOI, or REN lines.

Solution: Make sure that the GPIB interface board is the Controller-In-Charge.

Table C-1. Error codes (Continued)

Error Code

DescriptionDecimal Mnemonic

Appendix C IBERR

GPIB-488 C-3 Programming Reference Manual

ENOL—No listening device(s)

Cause: The routine detected no listeners.

Solution: Verify the following:

• Make sure that a device has been addressed properly.

• Check that at least two-thirds of the devices on the GPIB
bus are turned on, including the specified device.

• Make sure that all connections are secure.

• Verify the device(s) GPIB address.

• Make sure that the device was properly configured.

EADR—GPIB interface board not addressed

Cause: The GPIB interface board has not been addressed.

Solution: Call ibcmd and address the board.

If you are calling ibgts, with shadow handshaking enabled, call
ibcac.

EARG—Invalid argument

Cause: An invalid parameter has been provided to a routine.

Solution: Check syntax and range of parameters. See Chapter 3, GPIB 488.1
Library Reference, and Chapter 4, GPIB 488.2 Library Reference.

ESAC—Board is not the system controller

Cause: Routine requires that the GPIB interface board is the system
controller.

Solution: Configure the board to be the system controller.

Appendix C IBERR

Programming Reference Manual C-4 GPIB-488

EABO—I/O operation aborted

Cause: I/O operation aborted. (time-out)

Solution: Check that the device is powered on.

Verify proper cable connections.

ENEB—Non-existent GPIB board

Cause: GPIB board is not recognized.

Solution: Make sure that GPIB board settings and configuration setup
parameters agree.

EOIP—Function not allowed while I/O is in progress

Cause: An illegal call is made during an asynchronous I/O operation.

Solution: Only ibstop, ibwait, and ibonl calls are allowed during
asynchronous I/O operations. The driver must be resynchronized by
calling one of the following:

• ibwait (mask contains CMPL)—The driver and
application are synchronized.

• ibstop—The asynchronous I/O is canceled, and the
driver and application are synchronized.

• ibonl—The asynchronous I/O is canceled, the interface
is reset, and the driver and application are synchronized.

Re-synchronization is successful if a CMPL is returned to ibsta.

ECAP—No capability for operation

Cause: A call attempts to use a capability which is not supported by the
GPIB board.

Solution: Don't use the call.

Appendix C IBERR

GPIB-488 C-5 Programming Reference Manual

EFSO—File system error

Cause: A problem was encountered while performing a file operation.

Solution: Verify the following:

• Make sure that you specified the correct filename.

• Check the spelling and the path.

• If you need more room on the disk, delete some files.

• Verify that you did not assign a name to a device which is
already used by a file.

EBUS—Command byte transfer error

Cause: A GPIB bus error occurs during a device function.

Solution: • Determine which device, if any, is abnormally slow to
accept commands and fix the problem with the device.

• Lengthen the assigned time limit using ibconfig with
the IbcTMO option.

ESTB—Serial poll status byte(s) lost

Cause: One or more serial poll status bytes received during an automatic
serial poll was lost.

Solution: Call ibrsp more frequently to read the status bytes. Ignore the
ESTB error.

Note: This error occurs only during ibrsp functions.

Appendix C IBERR

Programming Reference Manual C-6 GPIB-488

ESRQ—SRQ in “ON” position

Cause: A wait for an RQS can not occur because the GPIB SRQ line is ON.

Solution: Verify the following:

• Ignore the ESRQ until all devices are found.

• Make sure ibdev is called to open all devices on the bus
capable of asserting SRQ.

• Test that each device is unasserting SRQ.

• Check the cabling. Make sure that all devices are attached
and the connectors are seated properly.

ETAB—Table problem

Cause: There was a problem with a table used in a FindLstn or FindRQS.

Solution: • If the error occurs during a FindLstn, this is a warning
and not an error. Ignore the warning or make the buffer
larger.

• If the error occurs during a FindRQS, then none of the
specified devices are requesting services. Verify that the
device list contains the addresses of all online devices.

EHDL—Invalid handle

Cause: EHDL results when an invalid handle is passed to a function call.

Solution: • Do not use a device descriptor in a board function or
vice-versa.

• Make sure that the board index passed to the call is valid.

GPIB-488 I-1 Programming Reference Manual

Index

Numerics
488.1

library reference (table), 3-1
library routines

IBASK, 3-3
options (table), 3-3

IBCAC, 3-6
IBCLR, 3-7
IBCMD, 3-8
IBCMDA, 3-10
IBCONFIG, 3-12

options (table), 3-12
IBDEV, 3-16
IBDMA, 3-18
IBEOS, 3-20

selecting EOS (table), 3-20
IBEOT, 3-22
IBFIND, 3-24
IBGTS, 3-25
IBIST, 3-27
IBLINES, 3-28
IBLN, 3-30
IBLOC, 3-31
IBONL, 3-32
IBPAD, 3-33
IBPCT, 3-34
IBPPC, 3-35

values for P2-P0 (table), 3-35
IBRD, 3-37
IBRDA, 3-39
IBRDF, 3-40
IBRPP, 3-42
IBRSC, 3-44
IBRSP, 3-45
IBRSV, 3-46
IBSAD, 3-47
IBSIC, 3-48

IBSRE, 3-49
IBSTOP, 3-50
IBTMO, 3-51

timeout codes (table), 3-51
IBTRG, 3-53
IBWAIT, 3-54
IBWRT, 3-56
IBWRTA, 3-58
IBWRTF, 3-59

488.2
library reference (table), 4-1
library routines

AllSpoll, 4-2
DevClear, 4-3
DevClearList, 4-4
EnableLocal, 4-5
EnableRemote, 4-6
FindLstn, 4-7
FindRQS, 4-9
PassControl, 4-10
PPoll, 4-11
PPollConfig, 4-12
PPollUnconfig, 4-13
RcvRespMsg, 4-14
ReadStatusByte, 4-15
Receive, 4-16
ReceiveSetup, 4-17
ResetSys, 4-18
Send, 4-19
SendCmds, 4-20
SendDataBytes, 4-21
SendIFC, 4-22
SendList, 4-23
SendLLO, 4-25
SendSetup, 4-26
SetRWLS, 4-27
TestSRQ, 4-28

Index

Programming Reference Manual I-2 GPIB-488

TestSys, 4-29
Trigger, 4-30
TriggerList, 4-31
WaitSRQ, 4-32

A
AllSpoll, 4-2

B
bit definitions (table), B-2
board I/O (programming), 2-3

C
conventions used in the manual, iii
count variables (ibcnt and ibcntl/Ibcnt()), 2-4

D
DevClear, 4-3
DevClearList, 4-4
device handles (programming), 2-3
device I/O (programming), 2-2
device versus I/O (programming), 2-2
documentation

conventions used in the manual, iii

E
EnableLocal, 4-5
EnableRemote, 4-6
error variable (iberr/Iberr()), 2-4

F
FindLstn, 4-7
FindRQS, 4-9

G
global variables, 2-3
GPIB

488.1 library reference (table), 3-1
488.2 library reference (table), 4-1
differences between GPIB32 API and

GPIB488 API, 1-3
library utility programs, 1-2

asynchronous API, 1-3
support for VISA calls, 1-2
unsupported API, 1-3

migrating from GPIB32 API to GPIB488
API, 1-3

programming library, 2-1
software overview, 1-1

GPIB32 API
differences between GPIB488 and, 1-3
migrating to GPIB488 API, 1-3

GPIB-32.DLL function support, 1-2
GPIB488 API

differences between GPIB32 API and, 1-3
migrating from GPIB32 API, 1-3

GPIB488.DLL function support, 1-2

I
IBASK, 3-3

options (table), 3-3
IBCAC, 3-6
IBCLR, 3-7
IBCMD, 3-8
IBCMDA, 3-10
ibcnt/Ibcnt(), 2-4
ibcntl/Ibcnt(), 2-4
IBCONFIG, 3-12

options (table), 3-12
IBDEV, 3-16
IBDMA, 3-18
IBEOS, 3-20

selecting EOS (table), 3-20

Index

GPIB-488 I-3 Programming Reference Manual

IBEOT, 3-22
iberr/Iberr(), 2-4
IBFIND, 3-24
IBGTS, 3-25
IBIST, 3-27
IBLINES, 3-28
IBLN, 3-30
IBLOC, 3-31
IBONL, 3-32
IBPAD, 3-33
IBPCT, 3-34
IBPPC, 3-35

values for P2-P0 (table), 3-35
IBRD, 3-37
IBRDA, 3-39
IBRDF, 3-40
IBRPP, 3-42
IBRSC, 3-44
IBRSP, 3-45
IBRSV, 3-46
IBSAD, 3-47
IBSIC, 3-48
IBSRE, 3-49
IBSTA (variable), B-1

bit definitions (table), B-2
ibsta/Ibsta(), 2-4
IBSTOP, 3-50
IBTMO, 3-51

timeout codes (table), 3-51
IBTRG, 3-53
IBWAIT, 3-54
IBWRT, 3-56
IBWRTA, 3-58
IBWRTF, 3-59

L
languages supported (table), 1-1
library reference (GPIB 488.1, table), 3-1
library reference (GPIB 488.2, table), 4-1
library utility programs

support for VISA calls, 1-2

M
multiline interface messages

hex 00-3F (table), A-1
hex 40-7F (table), A-2
message definitions (MSG column),

(table), A-4

P
PassControl, 4-10
PPoll, 4-11
PPollConfig, 4-12
PPollUnconfig, 4-13
programming

board I/O, 2-3
device handles, 2-3

global variables, 2-3
device I/O, 2-2
device versus board I/O, 2-2
general concepts, 2-1
ibcnt and ibcntl/Ibcnt() (count variables),

2-4
iberr/Iberr() (error variable), 2-4
ibsta/Ibsta() (status word), 2-4
languages supported (table), 1-1
thread variables, 2-4
with the GPIB library, 2-1

R
RcvRespMsg, 4-14
ReadStatusByte, 4-15
Receive, 4-16
ReceiveSetup, 4-17
ResetSys, 4-18

Index

Programming Reference Manual I-4 GPIB-488

S
Send, 4-19
SendCmds, 4-20
SendDataBytes, 4-21
SendIFC, 4-22
SendList, 4-23
SendLLO, 4-25
SendSetup, 4-26
SetRWLS, 4-27
software

GPIB-32.DLL function support, 1-2
GPIB488.DLL function support, 1-2
overview, 1-1
supported languages (table), 1-1

status word (ibsta/Ibsta()), 2-4
support for VISA calls, 1-2
supported languages (table), 1-1

T
TestSRQ, 4-28
TestSys, 4-29
thread variables, 2-4
Trigger, 4-30
TriggerList, 4-31

U
utility programs, 1-2

W
WaitSRQ, 4-32

	GPIB-488 Programming Reference Manual
	Conventions
	Contents
	GPIB Software Overview
	Supported Languages
	Table 1-1. Programming Languages

	GPIB Library Utility Programs
	Support for VISA Calls
	GPIB-32.DLL Function Support
	GPIB488.DLL Function Support
	Unsupported API
	Asynchronous API
	GPIB32 API and GPIB488 API Differences
	Migrating from the GPIB32 API to the GPIB488 API

	Programming with the GPIB Library
	General Concepts
	Device vs. Board I/O
	Device I/O
	Board l/O
	Device Handles
	Global Variables
	ibsta/Ibsta()—The Status Word
	iberr/Iberr()—The Error Variable
	ibcnt and ibcntl/Ibcnt()—Count Variables

	Thread Variables

	GPIB 488.1 Library Reference
	Table 3-1. 488.1 Library routines
	IBASK
	Table 3-2. ibask Options

	IBCAC
	IBCLR
	IBCMD
	IBCMDA
	IBCONFIG
	Table 3-3. ibconfig Options

	IBDEV
	IBDMA
	IBEOS
	Table 3-4. Selecting EOS

	IBEOT
	IBFIND
	IBGTS
	IBIST
	IBLINES
	IBLN
	IBLOC
	IBONL
	IBPAD
	IBPCT
	IBPPC
	Table 3-5. Values for P2–P0

	IBRD
	IBRDA
	IBRDF
	IBRPP
	IBRSC
	IBRSP
	IBRSV
	IBSAD
	IBSIC
	IBSRE
	IBSTOP
	IBTMO
	Table 3-6. Timeout Codes

	IBTRG
	IBWAIT
	IBWRT
	IBWRTA
	IBWRTF

	GPIB 488.2 Library Reference
	Table 4-1. 488.2 Address word
	AllSpoll
	DevClear
	DevClearList
	EnableLocal
	EnableRemote
	FindLstn
	FindRQS
	PassControl
	PPoll
	PPollConfig
	PPollUnconfig
	RcvRespMsg
	ReadStatusByte
	Receive
	ReceiveSetup
	ResetSys
	Send
	SendCmds
	SendDataBytes
	SendIFC
	SendList
	SendLLO
	SendSetup
	SetRWLS
	TestSRQ
	TestSys
	Trigger
	TriggerList
	WaitSRQ

	Multiline Interface Messages
	Table A-1. Multiline Interface Messages (Hex 00-3F)
	Table A-2. Multiline Interface Messages (Hex 40-7F)
	Table A-3. Message definitions (MSG column)

	IBSTA
	Table B-1. Bit Definitions

	IBERR
	Table C-1. Error codes

	Index

